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One of the primary variables affecting ignition and spread of wildfire is fuel moisture content (FMC). Live

FMC (LFMC) is responsive to long term climate and plant adaptations to drought, requiring remote sensing

for monitoring of spatial and temporal variations in LFMC. Liquid water has strong absorption features in

the near- and shortwave-infrared spectral regions, which provide a physical basis for direct estimation of

LFMC. Complexity introduced by biophysical and biochemical properties at leaf and canopy scales presents

theoretical and methodological problems that must be addressed before remote sensing can be used for

operational monitoring of LFMC. The objective of this paper is to review the use of remotely sensed data

for estimating LFMC, with particular concern towards the operational use of LFMC products for fire risk

assessment. Relationships between LFMC and fire behavior have been found in fuel ignition experiments

and at landscape scales, but the complexity of fire interactions with fuel structure has prevented linking

LFMC to fire behavior at intermediate scales. Changes in LFMC have both direct (liquid water absorption)

and indirect (pigment and structural changes) impacts on spectral reflectance. The literature is dominated

by studies that have used statistical (empirical) and physical model-based methods applied to coarse resolu-

tion data covering the visible, near infrared, and/or shortwave infrared regions of the spectrum. Empirical

relationships often have the drawback of being site-specific, while the selection and parameterization

of physically-based algorithms are far more complex. Challenges remain in quantifying error of remote

sensing-based LFMC estimations and linking LFMC to fire behavior and risk. The review concludes with a

list of priority areas where advancement is needed to transition remote sensing of LFMC to operational use.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Fuel moisture content (FMC), the mass of water contained within
vegetation in relation to the dry mass, is a critical variable affecting fire
interactions with fuel. FMC is one of the primary variables in many fire
behavior prediction models and fire danger indices, as it affects ignition,
combustion, the amount of available fuel, fire severity and spread,
and smoke generation and composition (Anderson & Anderson, 2010;
Deeming et al., 1978; Finney, 1998; McArthur, 1967; Nelson, 2001;
Plucinski et al., 2010; Viegas et al., 1992). FMC is usually separated into
dead (DFMC) and live (LFMC) components. In many fire risk models,
DFMC is empirically determined from weather variables, diameter of
the material and biochemical compositions (Viney, 1991).

LFMC ismuchmore difficult to estimate frommeteorological indices
than DFMC, because living plants have a variety of drought adaptation
strategies (Viegas et al., 2001) and can draw upon moisture stored in
the soil. The Keetch-Byram Drought Index (KBDI, (Keetch & Byram,
1968)) has been indirectly correlated with LFMC for some species
(Dimitrakopoulos & Bemmerzouk, 2003; Xanthopoulos et al., 2006),
while other species appear to be driven more by medium-term meteo-
rological conditions or phenology (Castro et al., 2006; Pellizzaro et al.,
2007; Zylstra, 2011a). Even though DFMC across a landscape is a deter-
minant of landscape connectivity and therefore the potential area burnt
(Caccamo et al., 2012a), the correlation of intense fire behavior with
more persistent indicators such as deep soil dryness and/or extended
heatwave conditions suggests that the moisture conditions of live
fuels are also important determinants of fire behavior. For instance,
the Black Saturday bushfires of February 2009 inVictoria, Australia, dur-
ingwhich 173 people died andmore than 3500 houses were destroyed,
occurred after weeks of extreme record-breaking high temperatures,
which dried many plants to critically low levels (Gellie et al., 2010).
Drought had a major influence on the incidence of large bushfires
(≥1000 ha) in the Sydney Basin Bioregion, New SouthWales, Australia,
through drying of fuels over extended areas (Bradstock et al., 2009). The
2003 Sant Llorenç Fire in Catalonia, Spain, also occurred following a
periodwhere very hot, dry Saharan air produced criticalmoisture stress
in plants (Oliveras et al., 2009). Very low LFMC and dry, warm, Santa
Ana winds contributed to large bushfire events in southern California
in 2003 and 2007 (Keeley, 2004; Keeley et al., 2009).

In grasses, live and dead fuel loads are variable through time as se-
nescence converts live fuel to dead fuel. The proportion of herbaceous
fuel that is dead is important in determining the probability of ignition
and rate of spread (ROS) of wildfires (Cheney et al., 1998), which has
led to the use of vegetation indices for estimation of dead versus live
fuels proportion to compute fire danger potential (Burgan et al., 1998;
Newnham et al., 2011).

Obtaining spatially comprehensive and temporally frequent estimates
specifically for LFMC ismore problematic. Field sampling and gravimetric
methods (Lawson & Hawkes, 1989) are locally accurate but very costly.

Furthermore, generalization of thesemeasurements to landscape, region-
al, or global scales is not feasible from field sampling. Remotely sensed
(RS) data provide the opportunity to estimate LFMC over large areas at
fine spatial and temporal resolutions, but as illustrated in this review,
these data require calibration and validation. The initial hypothesis be-
hind satellite-based estimation of LFMC is that the impact of LFMC varia-
tion on the RS signal is strong enough to be discriminated from other
factors affecting spectral variation such as the atmosphere, soil back-
ground, solar and sensor geometry, and other plant characteristics. Sever-
al studies have been published in recent years to test this hypothesis
(Bowyer & Danson, 2004; Ceccato et al., 2001; Gillon et al., 2004;
Riaño et al., 2005) and multiple methods have been developed to es-
timate LFMC from both coarse and fine spatial resolution remote
sensors (e.g. Chuvieco et al., 2002; Peterson et al., 2008; Wang et al.,
2013; Yebra et al., 2008b). However, despite the success of thesemethods
few of the resulting products have been operationally integrated into
wildfire danger systems to date.

The objective of this paper is to review the use of RS data for esti-
mating LFMC to assess its potential, with the anticipation that these
RS-based products will soon become useful for operational use. To ad-
dress this objective we will cover the following aspects: (i) importance
of estimating LFMC in the context of fire risk assessment (Section 2);
(ii) methods of measuring vegetation water content and their relation-
ships with LFMC (Section 3); (iii) field data collection challenges and
recommendations (Section 4); (iv) models that have been developed
to derive LFMC from RS data as well as a brief review of the physical
bases for a RS based estimation of LFMC (Section 5); (v) challenges and
developments in satellite-based estimation of this variable (Section 6);
(vi) obstacles for the operational use of LFMC models and products
(Section 7); and (vii) priorities for research and applications within
this field (Section 8).

2. The importance of LFMC for fire risk assessment

The effects of LFMC on fire behavior are complex and not always
easy to identify empirically. Elevation of fuel temperature to the com-
bustion point requires loss of water through evaporation; thus, higher
LFMC should increase the time to ignition and decrease the probabil-
ity of ignition. LFMC has therefore been demonstrated to be a primary
determinant of time to ignition across multiple species at low to mod-
erate temperatures (Xanthopoulos & Wakimoto, 1993), exhibiting a
geometrically decreasing effect as temperatures are raised (Zylstra,
2011a) until the effect is negligible at temperatures corresponding
with the hottest parts of a flame (Fletcher et al., 2007). LFMC has
also been shown to correlate negatively with flame length from burn-
ing leaves (Zylstra, 2011a).

The way in which these factors affect fire behavior and risk is com-
plex and the subject of debate. Plucinski et al. (2010) found that in
laboratory recreations of shrub fires, the most important factors for
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spread initiation were LFMC and the presence of litter, and that shrub
density has a greater influence at lower moisture contents (see figure
3 Plucinski et al. (2010)). Similar effects on fire propagation in shrub
fuels have also been identified in field conditions (Davies et al., 2009;
Weise et al., 2005).

While these studies demonstrate the importance of LFMC in deter-
mining the incidence and scale of fires, specific influences on some
areas of fire behavior are less obvious. In a continuous fuel bed, ROS
can be expected to decrease as FMC increases, since fire velocity
is equal to the distance to ignition divided by time to ignition. This
is widely accepted for DFMC in a range of fire behavior models
(e.g. Burrows, 1999; Gould et al., 2007; McArthur, 1962; Rothermel,
1972), and Viegas et al. (in press) demonstrated that ROS in a
mixed bed of live and dead fuels was explained by the composite
FMC derived from both live and dead values. The relationship is far
less obvious in a discontinuous fuel bed however, and in their review
of historical heathland and crown fire experiments Alexander and
Cruz (2012) found an influence in laboratory experiments but not
in the field, proposing that the discrepancy was potentially due to
the larger heat fluxes present in field conditions. In this context,
Zylstra (2011a) noted that fire behaviors in discontinuous fuels are
not directly determined by causal factors, but are rather emergent
properties of the interactions between the flammability of plant parts,
forest geometry and exogenous factors, and are therefore subject to
numerous complex behaviors and feedbacks that unless specifically
accounted for in experimental process will confound any clear results.
This model also suggests that greater heat fluxes do not override the in-
fluence of LFMC on leaf ignitability, but rather have the effect of igniting
leaves at a greater distance ahead of the burning fuels. This implies that
the laboratory experiments identified an influence of LFMC because
they were able to control for a wider range of variables relevant to the
scale of the fuel complexes examined.

Although the immediate influence of LFMC on fire behavior may
be difficult to capture empirically, the overall effect becomes appar-
ent as an emergent property when the relationship is studied on a
landscape scale. Multiple studies using fire histories fromMediterra-
nean ecosystems have demonstrated relationships between LFMC
and actual fire occurrence and size. Schoenberg et al. (2003) exam-
ined monthly trends in chaparral LFMC in Los Angeles County,
California, USA, and found that burned area increased when LFMC
dropped below 90%. Dennison et al. (2008) investigated relation-
ships between chamise (Adenostoma fasciculatum) LFMC and fire
size and occurrence in the Santa Monica Mountains of California.
They found that while small fires occurred across a wide range of
LFMC values (59–139%), large fires (>10 km2) only occurred when
chamise LFMC was below 77%. Dennison and Moritz (2009) expanded
this analysis to LosAngeles County, California, and found similar relation-
ships between the occurrence of large fires and chamise LFMC, with a
LFMC threshold near 79%.

Chuvieco et al. (2009) also showed that lower LFMC increases fire
occurrence for shrublands and grasslands in the Cabañeros National
Park located in central Spain. Moisture variations in grasslands were
found to be good predictors of the number of fires and total burned
surface, while both the total burned area and the occurrence of
large fires were more sensitive to moisture variations of two shrubs
(Cistus ladanifer L. and Rosmarinus officinalis L.). Jurdao et al. (2012)
related seven years of MODIS thermal anomalies (MOD14, (Giglio
et al., 2003)) with LFMC calculated from Advanced Very High Resolu-
tion Radiometer (AVHRR) data using an empirical algorithm developed
by Garcia et al. (2008). They found significant differences between fire
and non-fire pixels and several spatial and temporal variables derived
from LFMC.

Outside Mediterranean ecosystems, there have been few compar-
isons between LFMC and fire occurrence. Maki et al. (2004) used
burning areas obtained from AVHRR to confirm the relationships be-
tween a vegetation dryness index (VDI) and ignited pixels and fire

behavior. A hypothetical trapezoidal shape was first defined by the
normalized difference vegetation index and normalized difference
water index of the research region bounded by four vertexes of
their maximum and minimum values using SPOT/VEGETATION data.
To estimate water status per fractional vegetation cover, the VDI
was calculated as 1 subtracted by the ratio between a point's distance
to the trapezoidal left side and distance to the right side. The VDI
values of fire-spread pixels were higher than those of the non-fire-
spread pixels and the fire front length was strongly related to VDI.
Drought conditions have been found to be closely related to the area
burned by unplanned fire in the Sydney sandstone area (Bradstock
et al., 2009), and Caccamo et al. (2011) demonstrated that this was
closely tied to greater landscape connectivity resulting from reductions
in LFMC.

Overall then, there is strong empirical evidence demonstrating the
effect of LFMC on fire occurrence and the extent of its impact, and labo-
ratory evidence demonstrating the direct relationship to fire behavior.
Field evidence for this connection is inconclusive; however there are
physical arguments that explain why the connection is not always
clear, and the observed effect of LFMC on fire size demonstrates that
such relationships must exist as emergent properties even if not yet
captured experimentally.

3. Measures of vegetation water content and relationships with LFMC

LFMC is a ratio of the mass of water contained in a live plant to the
total dry mass of the plant. Changes in LFMC are driven by both
changes in the moisture status of the leaves and seasonal changes
in dry matter, which represents the amount of available fuel to be
burned. Field sampled LFMC is calculated as:

LFMC ¼
mf−md

md

ð1Þ

wheremf is the mass of the “fresh” collected sample andmd is the dry
mass of the same sample.

When measuring moisture content in RS-based studies, the most
commonly used metric is the amount of leaf water divided by its area
(A), which is called the equivalent water thickness (EWT, g cm−2):

EWT ¼
mf−md

� �

A
: ð2Þ

EWT is more relevant to RS studies as the water absorption of in-
coming radiation is directly related to the depth of the water layer,
particularly in the near infrared (NIR: 700 to 1400 nm) and short-
wave infrared (SWIR: 1400 to 2500 nm) spectral bands.

EWT and FMC are linked through the dry matter content (DMC,
g cm−2), which is the inverse of the specific leaf area (SLA, cm2 g−1),
a more common term in plant physiology and functional ecology
(Garnier & Navas, 2012). DMC describes the areal expression of cellu-
lose, lignin and other components of plants that remain after drying.
DMC is defined as:

DMC ¼
md

A
: ð3Þ

DMC can be used to normalize thewatermass per area and calculate
FMC following:

LFMC ¼

mf−md

� �

A
md

A

0

B

B

B

B

@

1

C

C

C

C

A

¼
EWT

DMC
: ð4Þ

Eqs. (1) to (4) also apply to the calculation of DFMC.

457M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468



Since only EWT is directly related to radiation absorption by water,
the estimation of LFMCpartially relies on the accuracy of DMC estimates
(Riaño et al., 2005). DMC does not have strong specific absorption fea-
tures (Fourty & Baret, 1997), and therefore the estimation of LFMC
from RS data is more challenging than estimation of EWT.

LFMC calculated in Eqs. (1) and (4) is independent of the leaf area
and the amount of leaves that constitute the canopy or leaf area index
(LAI). However, this last parameter is extremely helpful when calcu-
lating the total canopy water content in the leaves per unit ground
area (CWC, g m−2) which is commonly computed by multiplying
the mean leaf EWT of a sample area by the LAI:

CWC ¼ EWT � LAI: ð5Þ

Consequently, CWC allows scaling leaf water content to the canopy
level and influences the amount of reflected radiation measured by re-
mote sensing. CWC has been related to LFMC (Zarco-Tejada et al., 2003)
andmay be correlatedwith LFMC if species happen to have similar DMC
(Chuvieco et al., 2003; Yebra et al., 2008b).

Senescence in grasses results in conversion of live fuel to dead fuel
over time. LFMC may not be separable from DFMC in partially cured
grasses, and estimated LFMC may represent an aggregate of both mea-
sures. In the sections that follow, grassland LFMC is considered as the
average moisture content of both live and dead fuel components, and
the degree of curing is not explicitly accounted for.

4. Field measurements of LFMC

Field measurements of LFMC are essential for calibration and val-
idation of satellite-based methods for estimating LFMC. Field mea-
surement of LFMC is straightforward requiring destructive sampling
of a representative sample of leaf material which is then weighed
fresh, oven dried, and reweighed to determine dry weight. However
the sampling design, in terms of the number of samples and their lo-
cation, must take into account the variability in LFMC that may occur
within individual plants in both horizontal and vertical directions,
and the variability between plants within the sampled area. Sampling
leaves from broadleaved trees may be simple, but sampling leaves in
some shrub species, where there is a mix of woody and leafy material,
may be more complex.

The key difficulty in making LFMC field measurements is ensuring
that they are spatially comparable to the RS data and this problem has
often limited scientists' ability to develop methods for monitoring
LFMC from space. The primary limitation is the spatial scale of sam-
pling. RS data suitable for monitoring LFMC are typically collected at
spatial scales ranging from 0.1 to 100 ha, while LFMC is typically sam-
pled at smaller scales ranging from 0.01 to 0.1 ha. Field measurement
of LFMC for comparison with satellite-based measurements requires:

(i) Site metadata, including sampling locations and dates, should
always be recorded. The coordinates of the center of the sam-
pling site is often sufficient, but a polygon around the perimeter
of the sampling site is much more useful. As much as possible,
the same site should be sampled to create a long-term record
of LFMC for that site. A change of a few meters that results in a
different slope or aspect being sampled could make time series
comparison much more difficult.

(ii) The area surrounding LFMC sampling sites should be as homo-
geneous as possible in vegetation and topography over an area
of 100 ha to make the comparison between LFMC and RS data
feasible. In some regions, this might be impossible but sites se-
lection should still be optimized.

(iii) Sites should ideally be dominated by one vegetation type, and
mixed vegetation sites should be avoided. For each site, all dom-
inant species presented should be sampled and their fractional
coverage should be recorded.

Databases have been created to collect field-sampled LFMC data
(e.g. the U.S. National Fuel Moisture Database (http://www.wfas.
net/nfmd/public/index.php, last accessed February 2013) and the
LFMC database developed from 1996 to 2010 by the University of
Alcalá (Spain) (Chuvieco et al., 2011)). However a global network to
routinely measure LFMC following a common sampling methodology
or protocol at the appropriate spatial and temporal resolutions has
not been established. This observational limitation makes it difficult
to obtain LFMC at a sufficient number of locations within a short
time interval to calibrate and validate satellite data products. A recent
development in the application of terrestrial laser scanning to mea-
sure vegetation EWT may in future provide a rapid non-destructive
approach to obtain LFMC in three dimensional space over spatial ranges
of 10–100 m based on dual-channel laser scanner measurements with-
in a sampling plot (Gaulton et al., 2013).

A common sampling protocol should address issues related to (i)
plot size, (ii) the best time to acquire the samples, (iii) what to do
when precipitation occurs, (iv) how many samples per plot to take,
(v) which kind of material to harvest (new and old leaves, combine
leaves and shoots, include grassland roots, etc.), how much material
and how many samples to take, (vi) information about the weighting
procedure (if the samples were weighted on the field or in the lab and
the weighing device accuracy), (vii) details about the drying process
(drying device, drying time and temperature) and (viii) the mate-
rial used to seal the samples for transportation to the lab, (see for
e.g. Desbois et al. (1997) and Zahn and Henson (2011)). Further
work is needed to understand spatial variability in LFMC across plant,
local, and regional scales to better inform sampling strategy.

5. Estimation of LFMC from satellite data

Various methods have been developed to estimate LFMC from
RS data, which may be broadly classified into statistical (empirical)
(Caccamo et al., 2012b; Dennison et al., 2005; Garcia et al., 2008;
Peterson et al., 2008) and physical model-based approaches (Colombo
et al., 2008; Yebra & Chuvieco, 2009a; Yebra et al., 2008b; Zarco-Tejada
et al., 2003). The type of sensor used to acquire RS data is an important
consideration for either method. Table 1 summarizes some examples
of application of RS data for LFMC estimation. Most of the studies in
Table 1 are focused on high temporal resolution sensors with a few
spectral bands, such as MODIS. Spectral vegetation indices (VI) are an
efficient means of obtaining empirical information from multispectral
sensors; however physical model-based methods also benefit from
VI. Typically, hyperspectral sensors are used for physical model-based
methods, since the numerous narrow spectral bands offer the possibility
of novel VI.

The decision to use any combination of method, sensor and spectral
information to estimate LFMC depends on the objectives of the research.
Before going into detail we will briefly review the physical basis for a
RS-based estimation of LFMC.

5.1. Physical basis for a RS-based estimation of LFMC

In the solar spectral domain, water has a direct effect on spectral
reflectance through absorption of radiation within the NIR and
SWIR spectral regions. Depending on tissue water content, reflec-
tance is thus reduced to a varying extent within the water absorption
features centered on 970, 1200, 1450, 1940, and 2500 nm (Knipling,
1970; Thomas et al., 1971; Tucker, 1980). RS methods which make
use of these absorption features are considered direct estimation
techniques. However, changes in leaf pigment concentrations and
leaf internal structure co-vary with LFMC, and produce changes in
visible and NIR reflectance that may be correlated with LFMC
(Fig. 1). When plants are under water stress, depletion of chlorophyll
may produce a decrease in reflectance in the visible bands, especially
in the red end of the visible spectrum. When leaves wilt during
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dehydration and senescence, many of the reflective interfaces of
leaves are eliminated as internal air space is reduced and cell walls
come together, which reduces NIR reflectance (Knipling, 1970).

Additionally, LFMC changes affect plant canopy temperature because
water availability is a critical parameter in plant evapotranspiration.
When the plant dries, transpiration and latent heat transport is reduced,
which increases sensible heat (Kozlowski et al. 1991). As a result of this
relation, the difference between air and canopy surface temperature (ST)
should be clearly related to plant water content and to water stress
(Boulet et al., 2007; Gonzalez-Dugo et al., 2012; Moran et al., 1994;
Rahimzadeh-Bajgiran et al., 2012; Vidal et al., 1994).

Finally the microwave region has also been found to be sensitive
to water content of plant and soil moisture. Changes in dielectric
constant associated with the water content of biomass components
(leaves, branches, and stems) impact the radar backscatter measure-
ments and introduce larger variability when compared with dry biomass
(Way et al., 1991). However the use of microwave images for retrieval of
plant water content is more complex than with optical sensors, and pre-
sents different factors of potential confusion, such as vegetation biomass,
height, topographic position or roughness (Beaudoin et al., 1995).

Table 1

Examples of studies using RS data to estimate LFMC.Methodologies, sensors, spectral and ancillary information used, and vegetation types are listed, alongwith the corresponding reference.

In the case of physical model-based (RTM)methodologies the inversemethod is indicated. LUT is look-up table, # sites is the number of sites used in the study, ST is the surface temperature,

DOY is a function of the day of the year, LCT is the land cover type, TM is the reflectance in a Landsat Thematic Mapper-like broad waveband and Ccov is the canopy coverage.

Method Sensor Spectral information Ancillary

information

Vegetation type Locations #

sites

Independent

validation

Reference

Empirical AVHRR NDVI ST, DOY, LCT Mediterranean grasslands

and shrublands

Spain 7 Yes Chuvieco et al.

(2004c)

Empirical MODIS NDWI, VARI None Chaparral California, U.S.A. 3 No Stow et al.

(2005)

Empirical MODIS NDVI, NDWI None Chaparral and coastal

shrubland

California, U.S.A. 12 No Dennison et al.

(2005)

Empirical MODIS B1, B2, B3, B4, B5, B6, B7, NDVI,

SAVI, EVI, NDWI, NDII6, NDII7,

NDGR, VARI

None Chaparral California, U.S.A. 4 Yes Stow et al.

(2006)

Empirical MODIS NDVI, EVI, VARI, VIg None Chaparral California, U.S.A. 14 No Roberts et al.

(2006)AVIRIS NDII6, NDII7, NDWI, WI, EWT

RTM-Simulations MODIS B1, B2, B3, B4, B5, B6, B7 None Pine stands and hard wood

dominated areas

Georgia, U.S.A. 2 No Hao and Qu

(2007)

Empirical

Empirical MODIS NDII6, NDWI, VARI Max–min

scaled NDII6, NDWI, VARI

None Chaparral California, U.S.A. 11 Yes Stow and

Niphadkar

(2007)

Empirical MODIS NDVI, EVI, VARI, VIgreen,

NDII6, NDII7, NDWI

None Chaparral and coastal

sagescrub

California, U.S.A. 14 No Peterson et al.

(2008)

RTM-LUT MODIS NDVI, SAVI, EVI, GEMI, VARI,

NDII6, NDWI, GVMI

LAI, DMC, LCT Mediterranean Grasslands

and shrublands

Cabañeros

National Park,

Spain

5 Yes Yebra et al.

(2008b)

Empirical

Empirical AVHRR NDVI ST, Function of

day of year, LCT

Mediterranean Shrublands Spain 7 Yes Garcia et al.

(2008)

Mediterranean Grasslands

RTM-LUT MODIS B1, B2, B3, B4, B6, B7 LAI, plant

ecological

information

Mediterranean Shrublands Spain 12 Yes Yebra and

Chuvieco

(2009b)

RTM-LUT MODIS B1, B2, B3, B4, B6, B7, NDII6 None Mediterranean Woodlands Spain 5 Yes Yebra and

Chuvieco

(2009a)

Empirical MODIS VARImax–min and NDII6max–min None Shrubland, heathland and

sclerophyll forest

South-eastern

Australia

8 Yes Caccamo et al.

(2012b)

Empirical AISA Eagle and

Hawk sensors

Reflectance, first derivatives,

MSI, WI, NDWI

None Calluna vulgaris and

grassland

Central Pennine

uplands, U.K.

10 No Al-Moustafa et

al. (2012)

TM5/TM7, NDVI, NDII6

Empirical MODIS NDVI, NDWI, CWC None Gambel Oak Sagebrush Utah, U.S.A. 10 No Qi et al. (2012)

RTM Simulations NDWI, NDII6, SWRI, RMSI,

NDMI, NDTI, CAI, NDLI, NDNI,

LCA, SINDRI, DMCI, ratio of

water index and dry-matter

index

None Quercus alba, Acer rubrum

and Zea mays

None None Yes Wang et al.

(2013)

Empirical

RTM, LUT MODIS B1, B2, B3, B4, B5, B6, B7, NDII6 LAI, Ccov Woodlands Spain 19 Yes Jurdao et al.

(2013)

Fig. 1. Reflectance spectra for vegetation canopies with different LFMC values. Spectra

were collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over a

plot dominated byAdenostoma fasciculatum in southern California, U.S.A. The approximate

spectral extent of the first seven MODIS bands is also shown in gray.
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5.2. Statistical versus physical model-based approaches

Empirical methods for LFMC estimation are commonly based on
statistical fitting between field-measured LFMC and spectral mea-
sures based on reflectance data.

The alternatives to empirical approaches are those based on simu-
lation models, which use physical models to estimate a parameter
(water content in this case), based on a set of simulation scenarios.
The estimation is commonly based on comparing the observed reflec-
tances of every pixel to those simulated in a look-up table, assigning
to each pixel the parameters of the most similar simulated spectrum.
The concept of ‘similarity’ is commonly formalized in radiative transfer
model (RTM) inversion approaches using a merit function, which
implies minimizing the differences between the observed andmodeled
reflectance. Several merit functions have been formulated and used for
RTM inversion (Table 2). The RS inputs for the inversion can be either
spectral waveband indices or both.

Yebra et al. (2008b) compared the performance of statistical and
physical approaches to derive LFMC of Mediterranean grassland and
shrubland species from MODIS reflectance measurements. Both ap-
proaches provided good estimations of LFMC for both vegetation func-
tional types. The physical approach based on simulated data was more
complex to parameterize, but offered lower standard errors of estima-
tion of LFMC of 29.5% and 12.6% for grasslands and shrublands versus
30.1% and 17.5% for the statistical approach. The physical approach
also proved more robust when several calibration samples were select-
ed, since the coefficients of the calibrated models did not significantly
vary with the samples used and consequently were expected to have
a greater generalization power. This hypothesis was tested by Yebra
et al. (2008a)with groundmeasurements obtained at other areas dom-
inated by grasslands in Spain and Australia. The results showed that
both physical and statistical models offered similar accuracy levels
when applied to grassland with analogous types of vegetation to the
calibration site with an average RMSE of LFMC of 42% and 36% for statis-
tical and physical model approaches respectively. Nevertheless, the
physical model offered greater accuracy than the statistical model
when themodels were applied to grasslandswith different characteris-
tics to those of the calibration sites with an average RMSE of 50% and
15%, for the statistical and physical model, respectively.

5.3. Fine versus coarse spatial and spectral resolution input data

Coarse spatial resolution, globally available AVHRR or MODIS data are
the most common choice for estimating LFMC from RS data, as they pro-
vide high enough temporal resolution for operational applications. The
first studies were carried out in the 1980s and 1990s, when strong

correlations between LFMC and multitemporal series of AVHRR data
were found for herbaceous species using the Normalized Difference
Vegetation Index (NDVI, Table 3) (Chladil & Nunez, 1995; Paltridge &
Barber, 1988). Weaker relationships were reported for shrubs and
trees, as chlorophyll absorption and NIR reflectance do not correlate
as strongly for these vegetation types as for grasses (Yebra et al.,
2008b). Improved empirical models have combined NDVI with surface
temperature, a seasonal trend index (Chuvieco et al., 2004c) and mete-
orological data (Garcia et al., 2008).

Since the launch of Terra and Aqua satellites by NASA in 1999 and
2002, respectively, MODIS data have been much more commonly used
to estimate LFMC (Caccamo et al., 2012b; Dennison et al., 2005;
Peterson et al., 2008; Roberts et al., 2006; Stow & Niphadkar, 2007;
Stow et al., 2005, 2006; Yebra & Chuvieco, 2009a,b; Yebra et al., 2008b),
as this sensor offers a finer spatial and spectral resolution than AVHRR,
along with additional bands in the NIR and SWIR regions (Fig. 1). While
MODIS and AVHRR will eventually become unavailable, the new Visible
Infrared Imaging Radiometer Suite (VIIRS) is expected to provide data
continuity with better spatial resolution (Lee et al., 2006).

Medium-spatial-resolution sensors such as Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper + (ETM+) sensors
have also been used to estimate LFMC (Chuvieco et al., 2002; Yilmaz
et al., 2008). Chuvieco et al. (2004b) examined the correlation coeffi-
cients computed between VI derived from AVHRR, SPOT-Vegetation,
Landsat TM, and field-measured LFMC and found consistent trends
among the three sensors showing similar correlation values in spite
of being from different time periods and having different spatial res-
olutions. Even though correlations were slightly stronger for Landsat
TM images, the combination of temporal resolution (every 16 days
for Landsat data) and cloud cover may limit the use of this type of me-
dium spatial resolution data for LFMC monitoring applications.

Active microwave images have been used to examine LFMC in
cloudy areas, because these wavelengths are not interfered with by
cloud cover. Leblon et al. (2002) compared radar image intensity values
from European Remote Sensing satellite Synthetic Aperture Radar
(ERS-1 SAR) imagery collected over boreal forest in 1994 to LFMC data.
The authors reported a significant relationship between rates of change
in LFMC and radar backscatter, which can be largely accounted for in
the relationship between rate of change in the backscatter coefficient
and rates of change in the LFMC, and therefore good correlations can be
found in areaswhere other forest parameters are relatively stable in time.

Airborne hyperspectral data have proven useful for LFMC retrieval
and validation against satellite data (Al-Moustafa et al., 2012; Cheng
et al., 2008, 2011; Roberts et al., 2006). Roberts et al. (2006) found
stronger correlations between spectral indices calculated fromAirborne
Visible Infrared Imaging Spectrometer (AVIRIS) data and LFMC than in-
dices calculated from MODIS data. However, while airborne data may
be acquired on demand, they are unlikely to have the temporal resolu-
tion required for LFMC monitoring.

Current plans for a space-borne imaging spectrometer mission,
the Hyperspectral InfraRed Imager (HyspIRI), specify a 19 day repeat
coverage for the imaging spectrometer instrument (http://hyspiri.jpl.
nasa.gov/, last accessed February 2013), which is an insufficient tem-
poral resolution for monitoring LFMC, but would provide useful data
for the calibration and validation of LFMC estimated from higher tem-
poral resolution sensors. Combinations of coarse and moderate spatial
resolution sensors may provide complementary spatial information
for operational LFMC monitoring.

High spatial resolution sensors, such as Quickbird, Ikonos, GeoEye-1,
and WorldView-2, have not previously been used for LFMC analysis. The
limited spectral range of these sensors (4–8 bands covering the visible
and near infrared) excludes measurement of spectral regions containing
liquid water absorption features, although simple VI based on visible
and near infrared reflectance may have some value. Data from the
plannedWorldView-3 mission, which includes a 3.7 m spatial resolution
SWIR band, may prove more useful for high resolution LFMC analysis.

Table 2

Merit functions formulated in the literature and used for RTM inversion. ρi,Obs and ρi,mod

are the observed and modeled reflectivity in each band i respectively, n the number of

bands considered in the comparison and v and w are the observed and modeled spectra

respectively, both of them considered as an n-dimensional feature vector.

Function Formulation Reference

Absolute error
AE ¼

X

n

i¼1

ρi;Obs−ρi;mod

�

�

�

�

� � Koetz et al. (2005)

Square error SE ¼
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� �2
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(2003)

Root mean

square error
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5.4. Input data used to estimate LFMC

Atmospheric correction of satellite radiance measurements to re-
trieve apparent surface reflectance reduces the effects of variation in
atmospheric conditions and solar irradiance. However, effects of dif-
ferent sensor view angles and differences in slope, aspect, and soil
background reflectance are readily apparent in RS data. Removing
such factors in spectral data means that any changes observed in the
spectra are more likely to be related to leaf biochemical composition,
leaf structure, or water content. VI are combinations of reflectance
measured at two or more wavelengths, which tend to suppress these
background effects and enhance spectral differences. VI can be directly
or indirectly related to LFMC depending on the wavelengths used
(Fig. 1). Liquid water absorbs radiation strongly in the SWIR, so indices
that include reflectance in that region such as theNormalizedDifference
Infrared Index (NDII) (Table 3) are directly related to LFMC and have
shown significant correlations with LFMC for grasslands, shrublands
and woodlands (Chuvieco et al., 2002, 2004b; Roberts et al., 2006;
Yebra et al., 2008b). MODIS band 5, centered on 1240 nm, also captures
liquid water absorption. The Normalized Difference Water Index
(NDWI) (Table 3) has been correlated with LFMC in southern California
chaparral (Dennison et al., 2005; Roberts et al., 2006). Indices using only
visible and NIR wavelengths with minimal water absorption, such as
NDVI (Table 3), are indirectly related to LFMC. Visible-NIR indices are
sensitive to both changes in pigment concentrations and changes in
LAI that may correspond with changing LFMC. Multiple studies have
found strong empirical relationships between the Visible Atmospheri-
cally Resistant Index (VARI, Table 3) and chaparral LFMC (Peterson
et al., 2008; Roberts et al., 2006; Stow et al., 2005, 2006), as well as
fire-prone vegetation types (shrubland, heathland and sclerophyll forest)
in south-eastern-Australia (Caccamo et al., 2012b). NDVI and other
visible-NIR indices are reliable indicators of vegetation phenology, and
measures of phenological changes may lead to useful empirical relation-
ships with LFMC (Hardy & Burgan, 1999).

The first derivative of canopy reflectance has been shown to be in-
sensitive to variations caused by changes in illumination intensity,
which may be related to variations in sun angle, cloud cover, atmo-
spheric attenuation or topography (Blackburn, 2007; Imanishi et al.,
2004). Another advantage of derivative analysis is that it can be
used to determine the location of key spectral features such as the
red edge, and chlorophyll absorption and, most importantly here,
water absorption peaks in the near- and shortwave infrared.
Al-Moustafa et al. (2012) successfully used airborne hyperspectral im-
agery to estimate LFMC in a Calluna vulgaris-dominated semi-natural
upland area in the United Kingdom, but found that a broad waveband
spectral index provided a very similar correlation with LFMC compared
to that derived using first derivatives at selected wavelengths between
400 and 2500 nm derived from the hyperspectral data.

More complex measures based on full range reflectance spectra
have also successfully been used to estimate LFMC. Roberts et al.
(2006) found correlations between chaparral LFMC and both green
vegetation and non-photosynthetic vegetation fractions calculated
from AVIRIS and MODIS data using a spectral mixture model. Finally,
several authors have used thermal infrared (TIR) data to estimate
plant water content, mainly for crops (Gonzalez-Dugo et al., 2012;
Jackson et al., 1981; Moran et al., 1994). Forest and shrub canopies
are more complex, but relationships between the differences in air and
surface temperature and LFMC have been also found (Chuvieco et al.,
2004c). TIR radiation can be used alone or in combination with green-
ness vegetation indices such NDVI. The combined use of TIR and VI has
shown statistically stronger relationships with LFMC than either of the
two variables alone (Chuvieco et al., 2004c) because the differences in
air and surface temperature are closely related to the density of vegeta-
tion coverage.

A breakthrough in TIR analyses was made using a synthesis of
polar-orbiting and geostationary satellite RS data (Anderson et al.,
2007, 2011; Kustas & Anderson, 2009). Geostationary RS data are spa-
tially coarser than MODIS or AVHRR data, but geostationary sensors
acquire a daily profile of land surface temperature, so that daily
evapotranspiration can be more accurately estimated. Evapotranspi-
ration estimates may reveal coarse scale drought stress, but plant
physiological adaptations to drought stress (and thus LFMC) vary by
vegetation type.

6. Challenges in estimating FMC from satellite data

The main challenges for estimating LFMC from satellite data fall
into two categories: theoretical and methodological. The former chal-
lenges are common to all methods and are mainly derived from the
strength of the theoretical link between LFMC variations, the detected
signal and other factors affecting spectral variation and data quality.
The latter challenges are those derived from the specific method or
approach used to link spectral information to LFMC.

6.1. Theoretical challenges

6.1.1. Decoupling the impact of EWT from DMC on reflectance

The first theoretical challenge is related to the complexity of
decoupling the impact of water from other factors affecting reflec-
tance, temperature, or backscatter. For instance, at the leaf level, esti-
mation of LFMC from NIR and SWIR data requires discriminating the
contribution of DMC from EWT. Sensitivity analyses with RTM have
proved that variations in reflectance when plants are drying are mainly
due to both EWT and DMC (Ceccato, 2001; Danson & Bowyer, 2004).
Riaño et al. (2005) showed that DMC of fresh samples could not be
appropriately estimated from RTM because (i) the higher specific

Table 3

Spectral indices used to estimate LFMC including their shortened acronym, mathematical formulation and reference. ρ is reflectance and the subscripts refer to MODIS bands shown

in Fig. 1, except in the case of Water Index, where the subscripts refer to wavelength in nm.

Index Formulation Reference

Normalized Difference Vegetation Index NDVI ¼
ρ2−ρ1

ρ2 þ ρ1
Rouse et al. (1974)

Soil Adjusted Vegetation Index SAVI = (1 + 0.5) (ρ2 − ρ1) / (ρ2 + ρ1 + 0.5) Huete (1988)

Enhanced Vegetation Index EVI ¼
2:5� ρ2−ρ1ð Þ

ρ2 þ 6� ρ1−7:5� ρ3 þ 1ð Þ
Huete et al. (2002)

Visible Atmospherically Resistant Index VARI = (ρ4 − ρ1) / (ρ4 + ρ1 − ρ3) Gitelson et al. (2002)

Vegetation Index — Green (also Normalized Green Red Difference) VIgreen = (ρ4 − ρ1) / (ρ4 + ρ1) Tucker (1979)

Normalized Difference Infrared Index (with band 6) NDII6 = (ρ2 − ρ6) / (ρ2 + ρ6) Hardisky et al. (1983)

Normalized Difference Infrared Index (with band 7) NDII7 = (ρ2 − ρ7) / (ρ2 + ρ7)

Normalized Difference Water Index NDWI ¼
ρ2−ρ5

ρ2 þ ρ5
Gao (1996)

Water Index WI = R900/R970 Peñuelas et al. (1993, 1997)

Global Vegetation Moisture Index GVMI ¼
ρ2 þ 0:1ð Þ− ρ6 þ 0:02ð Þ

ρ2 þ 0:1ð Þ þ ρ6 þ 0:02ð Þ
Ceccato et al. (2002a)

461M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468



absorption coefficient of water overmost of the solar-reflected spectrum
(Fig. 2) and (ii) EWT is usually greater than DMC. However, where
changes in leaf water content occur over a short time period and there
is little change in DMC, we can expect strong relationships between
leaf LFMC and spectral reflectance (Bowyer & Danson, 2004). Trombetti
et al. (2008) inverted the PROSPECT-SAILH model optimized with artifi-
cial neural networks to determine CWC over the continental United
StateswithMODIS data and validated their approach using CWC estima-
tions obtained from AVIRIS airborne hyperspectral data. MODIS-CWC
estimates gave consistent results throughout the continental USA but
the algorithm does not retrieve DMC and thus does not directly estimate
LFMC.

A few studies have attempted to measure canopy DMC with RS
data. Accurate DMC retrieval would allow conversion of CWC to LFMC,
assuming that LAI can also be accurately retrieved. Since the spectral re-
sponse to DMC is masked in fresh samples but not in dry samples, Riaño
et al. (2005) proposed obtaining annual estimates of spatially distributed
DMC near the end of the driest season. They assume that this biomass
estimate will remain relatively constant over time without a change in
land cover.

Additionally, spectral indexes with absorption features sensitive
to DMC could improve LFMC estimates (Ustin et al., 2012; Wang et
al., 2011, 2013). Dry matter exhibits several absorption features in
the reflected SWIR (Asner, 1998; Feret et al., 2008; Jacquemoud et
al., 1995, 1996) which could be measured with narrow-band sensors.

To retrieve DMC, several multispectral indexes have been developed
like the Cellulose Absorption Index (Nagler et al., 2000), the
ASTER-defined Lignin-Cellulose Absorption index and the improved
Shortwave-Infrared Normalized Difference Residue Index (Serbin et al.,
2009). These three spectral indices were designed to estimate the cover-
age of dry non-photosynthetic vegetation (plant litter or crop residue)
over bare soil, and not DMC of living foliage.

Two dry matter indices were developed based on the spectral dif-
ferences between DMC and EWT (Romero et al., 2012; Wang et al.,
2011, 2013). The Normalized Dry Matter Index (NDMI) is based on
one narrow absorption feature of dry matter (1722 nm) at which
the specific absorption coefficient of dry matter is greater than that
of water (Wang et al., 2011, 2013). The effect of DMC on simulated
leaf reflectance may be seen by a change in the slope of reflectance
spectra at 1710–1750 nm (Fig. 1). Romero et al. (2012) found that the
normalized difference ratio (ρ2305 − ρ1495)/(ρ2305 + ρ1495), where ρ

is reflectance and the subscript is wavelength in nm, also estimated
DMC, because the absorption coefficient of dry matter at 2305 nm is
greater than that of liquid water. While the absorption coefficients of
dry matter may be greater than water at 1722 and 2305 nm, it is not
certain that these indices could be used to measure canopy DMC be-
cause there is often more liquid water than dry matter in leaves.

Wang et al. (2013) hypothesized that the ratio of a spectral water
index and a spectral dry matter index would be related to LFMC since
LFMC is the ratio of EWT/DMC. The relationships between index ra-
tios and LFMC were significant but non-linear (Wang et al., 2013).
The ratio of the NDII6 (Table 3) to NDMI produced particularly strong
correlations. Experimental data at the leaf scale validated this approach
(Wang et al., 2013), but future research needs to be done at the canopy
scale with narrow-band sensors. It is currently unclear how uncertainty
in retrieved DMC and EWT will affect accuracy of combined LFMC
estimation.

6.1.2. Confounding effects of LAI and other canopy variables

At the canopy level, the retrieval of LFMC from RS data needs to
discriminate the influence of leaf structure, LAI and fraction coverage
on plant reflectance (Ceccato et al., 2002b; Zarco-Tejada et al., 2003).
CWC is the product of leaf EWT and LAI (Eq. 5), but LFMC is indepen-
dent from LAI and may remain constant while LAI varies spatially or
temporally. Weak relationships between LFMC and spectral reflectance
are expected when there is also variation in LAI, as this factor has a
stronger influence on canopy reflectance (Bowyer & Danson, 2004),
but if LAI changes slowly over space and time, strong relationships be-
tween spectral reflectance and LFMC may be expected (Al-Moustafa
et al., 2012). This was confirmed in the physical model-based study of
Danson and Bowyer (2004) which showed that when a canopy reflec-
tance model was driven by site-specific biophysical data with a narrow
range of leaf DMCand LAI, statistically significant relationships between
VIs and LFMC were obtained.

LAI significantly affects NDII, an index sensitive to water absorption,
for a constant EWT value. But if the EWT ∗ LAI product (CWC) is con-
stant, NDII also remains quite stable. PROSAIL simulations in Fig. 3
demonstrate the above statement. NDII6 varies broadly (0.105–0.389)
for the same EWT (0.01 g/cm2) when LAI (1–5) and therefore CWC
(0.012–0.060 g/cm2) is varied (Fig. 3, left). On the other hand,
NDII6 would have similar values (0.326–0.404) for the same CWC
(0.05 g/cm2) even though EWT changes (Fig. 3, right). In this
case, CWC is kept constant by simultaneously changing EWT and
LAI.

Spatial heterogeneity of vegetation within a pixel is a major issue
for estimating LFMC and for comparing estimated LFMC with ground
measurements (Qi et al., 2012). For heterogeneous areas such as
savannah-like environments, LFMC estimated from RS data will not
represent LFMC for a single species, but rather an aggregate LFMC for
the area measured by the sensor. There is potential for using spectral
mixture analysis (SMA, Shimabukuro and Smith (1991)) to estimate
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the PROSPECT leaf model (version 4 (Feret et al., 2008)) and b) correlation between
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DMC for fresh leaves. Figure adapted from Riaño et al. (2005).
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LFMC at the subpixel level and to improvemethods to aggregate samples
from different endmembers (species). When species vary spatially, a
different set of endmembers could be appropriate to estimate LFMC at
the subpixel level for each species, inwhat is calledmultiple endmember
SMA (MESMA, Roberts et al. (1998)). Relative SMA (RSMA, Okin (2007),
Okin et al. (2013)) might be another option when fraction of each
endmember changes over time within the same pixel. Another possibil-
ity is that two pixels might have the same species composition with the
same LFMC but different fraction of soil cover. To account for this, Huang
et al. (2009) isolated the vegetation surface reflectance from the soil sig-
nal using SMA to estimate in their case corn and soybean water content
independent of the soil fraction. Finally, operational LFMC from MODIS
or other coarse spatial resolution optical image data is most affected by
heterogeneous vegetation type composition within the ground resolu-
tion element. For example, natural forest could contain in the same
pixel irrigated agriculture and each vegetation type would have a differ-
ent seasonal behavior. LFMC of the natural forest would be impacted by
the irrigated agriculture, so it would also need to be spectrally unmixed.

6.2. Methodological challenges

Both physical model-based (RTM) and statistical (empirical) methods
to estimate LFMC from RS data have considerable limitations.

6.2.1. Site-specificity of statistical methods

Due to the site-specificity of statistical methods, empirical rela-
tionships cannot be applied to regional or global scales due to spatial
differences in leaf and canopy characteristics, soil background, sensor
characteristics and observation conditions (Dennison et al., 2005;
Garcia et al., 2008; Riaño et al., 2005; Yebra et al., 2008a). Dennison
et al. (2005) demonstrated that the best fit linear regressions of
LFMC versus NDVI were site dependent (Fig. 4). Garcia et al. (2008)
combined AVHRR and meteorological data for estimating LFMC.
Their model showed good performance in grassland and shrubland
but the authors stated that the application of the models to areas
with different vegetation types/species may provide an unreliable es-
timation of LFMC.

Although statistical methods may be site specific, models based on
heterogeneous sites or on multiple sites may capture broad relation-
ships between remotely sensed variables and LFMC. Peterson et al.
(2008) estimated LFMC using MODIS reflectance data by calibrating
empirical equations which accounted for site-specific and inter-annual
differences in vegetation amount and condition. Two new independent
variables were added to amultiple linear regression analysis: an additive
VI summary statistic variable, and a multiplicative VI summary statistic
variable. This allowed the regression model to be used for a given func-
tional type. Similarly, Caccamo et al. (2012b) aimed to account for

differences in site-specific properties and calibrated a statistical model
based on the maximum–minimum normalization of VARI and NDII6.

Researchers have also investigated new statistical methods to im-
prove statistical model performance. Stow and Niphadkar (2007)
normalized time series MODIS VIs using rescaling based on time se-
ries maximum and minimum VI values within each pixel. Max–min
scaling reduced the effects of spatial and interannual varying vegetation
cover, in order to relate changes of LFMC to meteorological drivers and
also reduced errors in LFMC estimates. Kogan et al. (2003) used a simi-
lar approach assessing vegetation health in response to drought using
AVHRR NDVI time series. Li et al. (2008) demonstrated the potential
of genetic algorithms coupled with partial least squares (GA-PLS) in re-
trieving EWT and CWC. Zhang et al. (2011) introduced orthogonal
signal correction-partial least square regression (OSC-PLSR) to extract
EWT and LFMC from lab-measured reflectance spectra. The OSC-PLSR
model showed good prediction for LFMC and reduced model complex-
ity compared to simple PLSR. Additional surface measurements such as
soil moisture may also provide opportunities for improving remote
estimation of LFMC (Qi et al., 2012).

6.2.2. Constraining parameters of physical model-based approaches

Since RTM are based on physical relationships that are independent
of sensor or site conditions, they should be more universal than empir-
icalmodels. However, the selection and parameterization of RTM are far
more complex than empirical models, since they require as inputs plant
physiological and structural variables that are not always available, and
are based on assumptions that may not accurately resemble conditions
found in nature (e.g., Lambertian broad-flat leaves, semi-infinite hori-
zontally homogeneous plant canopies), especially when complex cano-
pies are involved. Finally, physical models (i) present uncertainties
in the inversion mode, since very similar reflectances can be derived
from a different set of input parameters, which is the well-known
ill-posed inverse problem (Garabedian & Paul, 1964) and (ii) do not
take into account ecophysiological relations, and therefore they might
provide poor estimations when unrealistic combinations of input pa-
rameters are considered.

A priori knowledge of plant biophysical parameters should be used
to constrain the input parameters of the RTM to model conditions as
closely as possible to the actual canopy state (Combal et al., 2002a).
Some authors have chosen to include data derived from satellite im-
agery as input parameters (Zarco-Tejada et al., 2003). Others have re-
lied upon experimental data in controlled conditions (Riaño et al.,
2005; Yebra & Chuvieco, 2009a). Yebra and Chuvieco (2009a) and
Yebra et al. (2008b) proposed using ecological rules observed on
the field to avoid simulating unrealistic spectra derived from combina-
tions of parameters never met in nature. Using these ecological rules in
simulation models significantly decreased the residual estimation
error (RMSE = 19.77%) when compared to models run randomly
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combining the input parameters (RMSE = 64.93%) (Yebra & Chuvieco,
2009b).

Recently Jurdao et al. (2013) made an exhaustive exploration of
data sources to include ecological criteria in an RTM and estimated
LFMC in woodlands of two different climatic regions of Spain. In an at-
tempt to find the maximum accuracy, the authors fixed LAI and canopy
coverage of vegetation (Ccov) in the inversion using different remote
sensing products. However, these steps did not improve their results.

Since all these RTM studies are based on a priori knowledge of plant
biophysical parameters to represent realistic situations, the RTMmodels
calibrated this way can be applied to other areas without affecting the
accuracy of the estimations.

However, Pingheng and Quan (2011) pointed out that all these
approaches of alleviating the ill-posed problem based on a priori knowl-
edge of plant biophysical parameters can restrict the operational utility
ofmodel inversion. To overcome this issue, the authors applied a separate
merit function for each of the RTM input parameters based on specific
wavelengths determined by sensitivity analysis. Extensive validations
based on both in situ measured data sets and a RTM-simulated data set
suggested that these procedures can substantially improve the inversion
model performance and strongly reduce the “ill-posed” problem. How-
ever, this procedure needs to be applied and tested at the canopy level.

6.2.3. Dependence of physical model-based accuracies on inversion

procedure

Another critical aspect of retrieval of LFMC is that RTM perfor-
mance has a strong dependency on the inversion procedure used.
Yebra (2008) compared two different merit functions of similarity be-
tween observed and simulated spectra (relative minimum quadratic
distance (RMSE�p) and minimum spectral angle (SA), Table 2) and
concluded that the use of the SA criteria provides a more consistent
measure of spectral similarity which led to a more accurate estimation
of LFMC, with RMSE and R2 of 14.6% and 0.63 versus 22.43% and 0.36
using RMSE�p (Fig. 5).

7. Main problems for the operational use of RS derived LFMCmodels

7.1. LFMC estimation error

Errors in LFMC estimation may directly affect safety and resource
costs associated with prescribed fire and wildfire suppression (Weise

et al., 1998), depending on the sensitivity of the fire behavior model
to LFMC. The most widely used fire spread model (Rothermel) is highly
sensitive to LFMC in most fuel types and Jolly (2007) for example found
that a 10% difference in LFMC could produce up to 1200% difference in
predicted ROS. Fire managers using LFMC models must be aware of the
uncertainties involved in LFMC estimation, and how this uncertainty
can affect the accuracy of fire spread predictions and fire risk estimation.
Additionally, a formal evaluation program for LFMC estimation methods
should better guide end-users to decide which model-product they
should use in accordance with the accuracy needed.

Several published studies (Table 1) report LFMC estimation accura-
cies against field measured LFMC using the coefficient of determination
(R2), the root mean square error (RMSE) or mean absolute error
(MAE). However, a conclusive comparison between studies is not
possible due to the many differences in methodology and accuracy
reporting. For example, these studies have differences in: i) calibration
and validation procedures (e.g. RMSE sometimes reflects site-based or
multi-site parameter fitting, sometimes independent cross-validation);
ii) the input data used (sensor, RS product and collection); iii) the num-
ber, location, and type of field sites considered; and iv) protocol for field
sample collection and processing. Future scientific studies should strive
to use independent datasets to assess accuracy and report errors rather
than R2 values.

In general terms, LFMC of shrublands can be retrieved with higher
accuracy than LFMC of grasslands and woodlands. Focusing on the
studies that performed an independent validation (10 of 18 from
Table 1), errors reported ranged between 8 and 20% for shrublands
(Caccamo et al., 2012b; Garcia et al., 2008; Yebra & Chuvieco, 2009b),
25–61% for grasslands (Chuvieco et al., 2004c; Garcia et al., 2008; Yebra
et al., 2008b) and approximately 30% for woodlands (Jurdao et al.,
2013; Yebra & Chuvieco, 2009a). Higher errors may be reported for
grassland species due to higher variability in LFMC for grasses over time.

Errors in estimated LFMC are critically important for determining
fire risk. An error of 20% added to or subtracted from an estimated
LFMC of 90% would result in shrubland fire danger ranging from low
(ignition probability (IP) = 19% associated with a LFMC = 110%), to
high (IP = 60% associated with a LFMC = 70%) when IP is calculated
as in Chuvieco et al. (2004a). Dasgupta et al. (2007) evaluated the impli-
cation of uncertainties in LFMC for fire spread rate predictions using
FARSITE fire behavior model (Finney, 1998). Their results showed that
modeled fire spread rates for the pocosin fuel model when LFMC was

Fig. 4. Slope, y-intercept and R2 values for the best fit linear relationship between LFMC (%) and NDVI for chamise (Adenostoma fasciculatum) at 11 sites sampled by the Los Angeles

County Fire Department. Data from Dennison et al. (2005).
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below100%, andmaximumerrors of 56% in LFMC estimation could pro-
duce an equivalent error in fire spread rate of 47 m h−1 for a no wind,
no slope fire spread simulation.

7.2. LFMC and fire behavior

Some operational fire spread models (e.g. 1998) use fuel models
containing spatially constant descriptions of LFMC. Use of spatially
variable LFMC estimates provided by RS data can produce differences
in modeled fire spread (Bossert et al., 2000). A challenge for fire be-
havior models that incorporate more complex descriptions of
three-dimensional fuel distributions (e.g. Burgan, 1979; Linn et al.,
2002; Mell et al., 2007; Morvan & Dupuy, 2004; Zylstra, 2011a,b) is
estimation of LFMC within multiple fuel strata. In these situations,
two-layer RTM, such as the Kuusk Markov Chain Canopy Reflectance
Model (MCRM (Kuusk, 2001)) may prove useful. The Kuusk model
considers that the vegetation is homogeneously distributed for each
layer and uses leaf optical properties derived from the PROSPECT
model (Jacquemoud, 1990). The canopy directional reflectance is
generated based on the single scattering and diffuse fluxes from
each layer, using direct and diffuse solar irradiance. The Kuusk
model is more easily parameterized than other geometric models
due to its assumptions of homogenous canopies, while still providing
sufficient complexity through its inclusion of two vegetation layers
with independent input conditions. On account of that, this model
has been successfully used for fire severity modeling (Chuvieco et
al., 2007; De Santis & Chuvieco, 2007). The use of 3D models (e.g.
DART (Gastellu-Etchegorry et al., 2004) or FLIGHT (North, 1996))
should also be considered, although their parameterization would
be significantly more challenging due to the large number of input
parameters that are needed.

7.3. LFMC and fire risk

The conceptual definition of a fire risk assessment system should
include the most relevant components associated with the fire pro-
cess (Chuvieco et al., 2012). In relation to LFMC, another challenge
is translating LFMC estimated using RS data into fire risk units to
allow integration into a comprehensive fire risk assessment system.
LFMC can be converted into fire risk using empirical models relating
LFMC to fire occurrence, as discussed in Section 2. LFMC can also be
translated into ignition probability (IP), where moisture of extinction

(ME) identifies the minimum water content that prevents fire igni-
tion. Fuelswith LFMC values aboveMEwould have low (or no) probabil-
ity of being burned (Dimitrakopoulos & Papaioannou, 2001). This was
the basis of using ME to convert FMC to IP in a fire risk assessment by
Chuvieco et al. (2004a). The authors used an inverse linear function to
obtain IP from ME, based on critical thresholds (105% for shrub species
and 30% for grasslands) derived from experimental analysis. Jurdao
et al. (2012) explored several methods to convert LFMC into IP consider-
ing climate (Mediterranean and Eurosiberian regions) and vegetation
functional types (grasslands and shrublands). Non-parametric signifi-
cance tests, histograms and percentiles, classification trees, and logistic
regression models were used for estimating the IP from five variables
based on LFMC. Logistic regression analysis was found to be the most
advantageousmodelingmethodology, since it uses several predictor var-
iables to compute a continuous probability of IP. Chuvieco et al. (2004a)
and Jurdao et al. (2012) present regional solutions to estimating IP
from LFMC, but methods that can be scaled globally could potentially
be connected to global observations of fire occurrence (Justice et al.,
2002). Additionally, an elevated probability of high fire occurrence
does not necessarily imply a large number of fires or an extensive burned
area, because when causal agents are absent, few or no fire events occur
(Chuvieco et al., 2009).

8. Concluding remarks

Developing operational LFMC estimation is useful for improving
fire risk assessment. Improved spatial and temporal monitoring of
LFMC can potentially result in better allocation of fire protective
resources and increase vigilance for fire hazard to people and property.
This review demonstrates that recent research has addressed many is-
sues constraining operational LFMC monitoring. Further advancement
towards operational adoption of LFMC estimation can be realized in
the following areas:

i) Improvements in spatial resolution and spectral dimensionali-
ty which have the potential to provide more accurate LFMC es-
timation. VIIRS represents an advance in spatial resolution over
MODIS, while the planned HyspIRI mission could provide com-
plementary improvements in the spectral domain.

ii) Progress in algorithm development may enhance the utility of
LFMC estimates. Future work on statistical methods should
focus on making them more robust across larger areas. Physical
methods should improve retrieval of DMC and provide realistic
ranges of parameters for solving the ill-posed model inversion
problem.

iii) Most prior work has examined LFMC in Mediterranean ecosys-
tems in Europe and Western North America. Further research
is needed to assess the full utility of LFMC estimation across
other fire-prone ecosystems.

iv) Reduction of error in LFMC estimates is needed to improve fire
risk estimation and adoption by the end-user community. In-
tegration of LFMC into fire behavior and fire risk models
should include uncertainty produced by error in LFMC esti-
mates.

v) An international effort is needed to create a network of field
measurements for use in improving and validating LFMC esti-
mates. The global database should use consistent methodolo-
gy and be properly documented, georeferenced and publicly
accessible.

vi) Research projects should go beyond scientific papers and
should search for long-term operational viability of products
and interaction with end-users.

vii) A formal evaluation program for methods of mapping LFMC
should be organized to better guide end-users to assess which
product or method for LFMC estimation best fits their needs.

0.00

0.05

0.10

0.15

0.20

0.25

B3 B4 B1 B2 B6 B7

R
e
fl

e
c
ta

n
c
e

MODIS Bands

Selected spectrum (RMSE*p); LFMC=85.84%

Selected spectrum (SA);  LFMC=47.15%

Observed espectra; LFMC=45.54%

Fig. 5. Example of observed and simulated spectra using relative mean square error

(RMSE⁎ρ) and spectral angle (SA) as merit functions. The simulated spectrum selected

with the RMSE⁎ρ is more similar in absolute terms to the observed spectrum than the

simulated spectrum selected by the SA function. However the spectrum selected by the

SA function corresponds to LFMC estimates closer to the observed value (Yebra, 2008).

465M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468

image of Fig.�5


Acknowledgments

Portions of this work were supported by funding from the United
States National Aeronautics and Space Administration grants
#NNX11AF93G and #NNX09AN51G. Marta Yebra was supported
by a CSIRO OCE postdoctoral scholarship. USDA is an equal opportunity
provider and employer. Thanks to Dr. Stuart Matthews and Dr. Matt
Plucinski (CSIRO Ecosystem Sciences) for their helpful comments that
improved this paper.

References

Al-Moustafa, T., Armitage, R. P., & Danson, F. M. (2012). Mapping fuel moisture content
in upland vegetation using airborne hyperspectral imagery. Remote Sensing of Envi-
ronment, 127, 74–83.

Alexander, M. E., & Cruz, M. G. (2012). Assessing the effect of foliar moisture on the
spread rate of crown fires. International Journal of Wildland Fire. http://dx.doi.org/
10.1071/WF12008.

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P.
(2011). Evaluation of drought indices based on thermal remote sensing of evapo-
transpiration over the continental United States. Journal of Climate, 24, 2025–2044.

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007). A
climatological study of evapotranspiration and moisture stress across the continental
United States based on thermal remote sensing: 1. Model formulation. Journal of
Geophysical Research-Atmospheres, 112.

Anderson, S. A. J., & Anderson, W. R. (2010). Ignition and fire spread thresholds in gorse
(Ulex europaeus). International Journal of Wildland Fire, 19, 589–598.

Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflec-
tance. Remote Sensing of Environment, 64, 234–253.

Beaudoin, A., Vidal, A., Desbois, N., & Debaux-Ros, C. (1995). Monitoring the water sta-
tus of Mediterranean forests using ERS-1 to support fire risk prevention. IEEE
Transactions on Geoscience and Remote Sensing, 2, 963–966.

Blackburn, G. A. (2007). Wavelet decomposition of hyperspectral data: A novel ap-
proach to quantifying pigment concentrations in vegetation. International Journal
of Remote Sensing, 28, 2831–2855.

Bossert, J. E., Linn, R. R., Reisner, J. M., Winterkamp, J. L., Dennison, P. E., & Roberts, D. A.
(2000). Coupled atmosphere fire behavior model sensitivity to spatial fuels charac-
terization. Third symposium on fire and forest meteorology, Amer. Meteor. Soc. 80th
Annual Meeting Long Beach, CA (pp. 21–26).

Boulet, G., Chehbouni, A., Gentine, P., Duchemin, B., Ezzahar, J., & Hadria, R. (2007).
Monitoring water stress using time series of observed to unstressed surface tem-
perature difference. Agricultural and Forest Meteorology, 146, 159–172.

Bowyer, P., & Danson, F. M. (2004). Sensitivity of spectral reflectance to variation in live
fuel moisture content at leaf and canopy level. Remote Sensing of Environment, 92,
297–308.

Bradstock, R. A., Cohn, J. S., Gill, A. M., Bedward, M., & Lucas, C. (2009). Prediction of the
probability of large fires in the Sydney region of south-eastern Australia using fire
weather. International Journal of Wildland Fire, 18, 932–943.

Burgan, R. E. (1979). Estimating live fuel moisture for the 1978 National Fire Danger
Rating System. Research paper. INT-RP-226. Intermountain Forest and Range Exper-
iment Station, Ogden, Utah: USDA Forest Service (16 pp.).

Burgan, R. E., Klaver, R. W., & Klaver, J. M. (1998). Fuel models and fire potential from
satellite and surface observations. International Journal of Wildland Fire, 8, 159–170.

Burrows, N. D. (1999). Fire behaviour in jarrah forest fuels. CALMScience, 3, 31–84.
Caccamo, G., Chisholm, L. A., Bradstock, R. A., & Puotinen, M. L. (2011). Assessing the

sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing
of Environment, 115, 2626–2639.

Caccamo, G., Chisholm, L. A., Bradstock, R. A., & Puotinen, M. L. (2012a). Using
remotely-sensed fuel connectivity patterns as a tool for fire danger monitoring.
Geophysical Research Letters, 39, L01302.

Caccamo, G., Chisholm, L. A., Bradstock, R. A., Puotinen, M. L., & Pippen, B. G. (2012b).
Monitoring live fuel moisture content of heathland, shrubland and sclerophyll for-
est in south-eastern Australia using MODIS data. International Journal of Wildland
Fire, 21, 257–269.

Castro, F. X., Tudela, A., Gabriel, E., Montserrat, D., Canyameres, E., & Segarra, M. (2006).
Evolution of live fuel moisture in Mediterranean forest. In D. X. Viegas (Ed.),
V international conference on forest fire research. Figuera da Foz, Amsterdam:
Elsevier BV.

Ceccato, P. (2001). Estimation of vegetation water content using remote sensing for the
assessment of fire risk occurrence and burning efficiency. Phylosophy (pp. 168).
Greenwich: University of Greenwich.

Ceccato, P., Flasse, S., & Gregoire, J. M. (2002a). Designing a spectral index to estimate
vegetation water content from remote sensing data: Part 2. Validation and applica-
tions. Remote Sensing of Environment, 82, 198–207.

Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. M. (2001). Detecting
vegetation leaf water content using reflectance in the optical domain. Remote Sens-
ing of Environment, 77, 22–33.

Ceccato, P., Gobron, N., Flasse, S., Pinty, B., & Tarantola, S. (2002b). Designing a spectral
index to estimate vegetation water content from remote sensing data: Part 1. The-
oretical approach. Remote Sensing of Environment, 82, 188–197.

Cheney, N. P., Gould, J. S., & Catchpole, W. R. (1998). Prediction of fire spread in grass-
lands. International Journal of Wildland Fire, 8, 1–13.

Cheng, T., Rivard, B., & Sanchez-Azofeifa, A. (2011). Spectroscopic determination of leaf
water content using continuous wavelet analysis. Remote Sensing of Environment,
115, 659–670.

Cheng, Y. -B., Ustin, S. L., Riano, D., & Vanderbilt, V. C. (2008). Water content estimation
from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote
Sensing of Environment, 112, 363–374.

Chladil, M. A., & Nunez, M. (1995). Assessing grassland moisture and biomass in Tasmania.
The application of remote sensing and empirical models for a cloudy environment.
International Journal of Wildland Fire, 5, 165–171.

Chuvieco, E., Aguado, I., Cocero, D., & Riaño, D. (2003). Design of an empirical index to
estimate fuel moisture content from NOAA-AVHRR analysis in forest fire danger
studies. International Journal of Remote Sensing, 24, 1621–1637.

Chuvieco, E., Aguado, I., & Dimitrakopoulos, A. (2004a). Conversion of fuel moisture content
values to ignition potential for integrated fire danger assessment. Canadian Journal of
Forest Research-Revue Canadienne de Recherche Forestiere, 34(11), 2284–2293.

Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas, J., et al. (2012). Inte-
grating geospatial information into fire risk assessment. International Journal of
Wildland Fire. http://dx.doi.org/10.1071/WF12052.

Chuvieco, E., Cocero, D., Aguado, I., Palacios-Orueta, A., & Prado, E. (2004b). Improving
burning efficiency estimates through satellite assessment of fuel moisture content.
Journal of Geophysical Research-Atmospheres, 109(D14S07), 1–8. http://dx.doi.org/
10.1029/2003JD003467.

Chuvieco, E., Cocero, D., Riaño, D., Martín, M. P., Martínez-Vega, J., de la Riva, J., et al.
(2004c). Combining NDVI and surface temperature for the estimation of live fuel
moisture content in forest fire danger rating. Remote Sensing of Environment, 92,
322–331.

Chuvieco, E., De Santis, A., Riaño, D., & Halligan, K. (2007). Simulation approaches for
burn severity estimation using remotely sensed images. Journal of Fire Ecology, 3,
129–150.

Chuvieco, E., González, I., Verdú, F., Aguado, I., & Yebra, M. (2009). Prediction of fire oc-
currence from live fuel moisture content measurements in a Mediterranean eco-
system. International Journal of Wildland Fire, 18, 430–441.

Chuvieco, E., Riaño, D., Aguado, I., & Cocero, D. (2002). Estimation of fuel moisture con-
tent from multitemporal analysis of Landsat Thematic Mapper reflectance data:
Applications in fire danger assessment. International Journal of Remote Sensing,
23, 2145–2162.

Chuvieco, E., Yebra, M., Jurdao, S., Aguado, I., Salas, F. J., García, M., et al. (2011). Field
fuel moisture measurements on Spanish study sites. In U.o.A. Department of
Geography, Spain (Ed.), Alcala de Henares: Department of Geography.

Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino, C., et al. (2008).
Estimation of leaf and canopy water content in poplar plantations by means of
hyperspectral indices and inverse modeling. Remote Sensing of Environment, 112,
1820–1834.

Combal, B., Baret, F., & Weiss, M. (2002a). Improving canopy variables estimation from
remote sensing data by exploiting ancillary information. Case study on sugar beet
canopies. Agronomie, 22, 205–215.

Combal, B., Baret, F., Weiss, M., Trubuil, A., Mace, D., Pragne're, A., et al. (2002b). Retrieval
of canopy biophysical variables from bidirectional reflectance Using prior informa-
tion to solve the ill-posed inverse problem. Remote Sensing of Environment, 84, 1–15.

Danson, F. M., & Bowyer, P. (2004). Estimating live fuel moisture content from remote-
ly sensed reflectance. Remote Sensing of Environment, 92, 309–321.

Dasgupta, S., Qu, J. J., Hao, X., & Bhoi, S. (2007). Evaluating remotely sensed live fuel
moisture estimations for fire behavior predictions in Georgia, USA. Remote Sensing
of Environment, 108, 138–150.

Davies, G. M., Legg, C. J., Smith, A. A., & MacDonald, A. J. (2009). Rate of spread of fires in
Calluna vulgaris-dominated moorlands. Journal of Applied Ecology, 46, 1054–1063.

De Santis, A., & Chuvieco, E. (2007). Burn severity estimation from remotely sensed
data: Performance of simulation versus empirical models. Remote Sensing of Envi-
ronment, 108, 422–435.

Deeming, J. E., Burgan, R. E., & Cohen, J. D. (1978). The National Fire-Danger Rating System—

1978. General technical report INT-39. Intermountain Forest and Range Experiment Sta-
tion, Ogden, Utah: USDA Forest Service (63 pp.).

Dennison, P. E., & Moritz, M. A. (2009). Critical live fuel moisture in chaparral ecosystems:
A threshold for fire activity and its relationship to antecedent precipitation. Interna-
tional Journal of Wildland Fire, 18, 1021–1027.

Dennison, P. E., Moritz, M. A., & Taylor, R. S. (2008). Evaluating predictive models of
critical live fuel moisture in the Santa Monica Mountains, California. International
Journal of Wildland Fire, 17, 18–27.

Dennison, P. E., Roberts, D. A., Peterson, S. H., & Rechel, J. (2005). Use of Normalized
Difference Water Index for monitoring live fuel moisture. International Journal of
Remote Sensing, 26, 1035–1042.

Desbois, N., Deshayes, M., & Beudoin, A. (1997). Protocol for fuel moisture content
measurements. In E. Chuvieco (Ed.), A review of remote sensing methods for the study
of large wildland fires (pp. 61–72). Alcalá de Henares: Departamento de Geografía,
Universidad de Alcalá.

Dimitrakopoulos, A., & Papaioannou, K. K. (2001). Flammability assessment of Mediter-
ranean forest fuels. Fire Technology, 37, 143–152.

Dimitrakopoulos, A. P., & Bemmerzouk, A. M. (2003). Predicting live herbaceous mois-
ture content from a seasonal drought index. International Journal of Biometeorology,
47, 73–79.

Feret, J. -B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., et al.
(2008). PROSPECT-4 and 5: Advances in the leaf optical properties model separat-
ing photosynthetic pigments. Remote Sensing of Environment, 112, 3030–3043.

Finney, M. A. (1998). FARSITE: Fire area simulator—Model development and evaluation.
USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4 (Fort
Collins, CO. 51 pp.).

466 M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468

http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0005
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0005
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0005
http://dx.doi.org/10.1071/WF12008
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0010
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0010
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0015
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0015
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0015
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0015
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0020
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0020
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0025
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0025
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0030
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0030
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0030
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9000
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9000
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9000
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0660
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0660
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0660
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0035
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0035
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0040
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0040
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0040
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0045
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0045
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0045
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0665
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0665
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0665
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0050
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0050
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0055
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0060
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0060
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0060
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0670
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0670
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0670
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0070
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0070
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0070
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0675
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0675
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0675
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0680
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0680
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0680
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0085
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0085
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0085
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0090
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0090
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0090
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0095
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0095
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0095
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0100
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0100
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0105
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0105
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0105
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0110
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0110
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0110
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0115
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0115
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0115
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0120
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0120
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0120
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0125
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0125
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0125
http://dx.doi.org/10.1071/WF12052
http://dx.doi.org/10.1029/2003JD003467
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0130
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0130
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0130
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0135
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0135
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0135
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0140
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0140
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0140
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0145
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0145
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0145
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0145
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0695
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0695
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0695
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0150
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0150
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0150
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0155
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0155
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0155
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0700
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0700
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0700
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0165
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0165
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0170
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0170
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0170
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0175
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0175
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0180
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0180
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0180
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0705
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0705
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0705
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0185
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0185
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0185
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0190
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0190
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0190
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0195
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0195
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0195
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0710
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0710
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0710
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0710
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0200
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0200
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0205
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0205
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0205
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0210
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0210
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0715
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0715
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0715


Fletcher, T. H., Pickett, B. M., Smith, S. G., Spittle, G. S., Woodhouse, M. M., Haake, E.,
et al. (2007). Effects of moisture on ignition behavior of moist California chaparral
and Utah leaves. Combustion Science and Technology, 179, 1183–1203.

Fourty, T., & Baret, F. (1997). Vegetation water and dry matter contents estimated from
top-of-the atmosphere reflectance data: A simulation study. Remote Sensing of
Environment, 61, 34–45.

Gao, B. C. (1996). NDWI. A normalized difference water index for remote sensing of
vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

Garabedian, P., & Paul, R. (1964). Partial differential equations. New York: Wiley.
Garcia,M., Chuvieco, E., Nieto, H., & Aguado, I. (2008). Combining AVHRR andmeteorolog-

ical data for estimating live fuelmoisture content. Remote Sensing of Environment, 112,
3618–3627.

Garnier, E., & Navas, M. L. (2012). A trait-based approach to comparative functional
plant ecology: Concepts, methods and applications for agroecology. A review.
Agronomy for Sustainable Development, 32, 365–399.

Gastellu-Etchegorry, J. P., Martin, E., & Gascon, F. (2004). DART: A 3D model for simu-
lating satellite images and studying surface radiation budget. Remote Sensing of
Environment, 25, 73–96.

Gaulton, R., Danson, F. M., Ramirez, F. A., & Gunawan, O. (2013). The potential of
dual-wavelength laser scanning for estimating vegetation moisture content.
Remote Sensing of Environment, 132, 32–39.

Gellie, N., Gibos, K., & Johnson, K. (2010). Relationship between severe landscape
dryness and large destructive fires in Victoria. In X. Viegas (Ed.), VI international
conference on forest fire research. Coimbra, Portugal: ADAI.

Giglio, L., Descloitres, J., Justice, C. O., & Kauffmam, J. B. (2003). An enhanced contextual
fire detection algorithm for MODIS. Remote Sensing of Environment, 87, 273–282.

Gillon, D., Dauriac, F., Deshayes, M., Valette, J. C., & Moro, C. (2004). Estimation of foliage
moisture content using near infrared reflectance spectroscopy. Agricultural and Forest
Meteorology, 124, 51–62.

Gitelson, A., Kaufmam, J. Y., Stark, R., & Rundquist, D. (2002). Novel algorithms for
remote estimation of vegetation fraction. Remote Sensing of Environment, 80,
76–87.

Gonzalez-Dugo, V., Zarco-Tejada, P., Berni, J. A. J., Suarez, L., Goldhamer, D., & Fereres, E.
(2012). Almond tree canopy temperature reveals intra-crown variability that is
water stress-dependent. Agricultural and Forest Meteorology, 154, 156–165.

Gould, J. S., McCaw, W. L., Cheney, N. P., Ellis, P. F., Knight, I. K., & Sullivan, A. L. (2007).
Project Vesta — Fire in dry eucalypt forest: Fuel structure, fuel dynamics and fire
behaviour. Perth WA: Ensis-CSIRO, Canberra ACT, and Department of Environment
and Conservation.

Hao, X. J., & Qu, J. J. (2007). Retrieval of real-time live fuel moisture content using
MODIS measurements. Remote Sensing of Environment, 108, 130–137.

Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth
form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies.
Photogrammetric Engineering and Remote Sensing, 49, 77–83.

Hardy, C. C., & Burgan, R. E. (1999). Evaluation of NDVI for monitoring live moisture
in three vegetation types of the Western U.S. Photogrammetric Engineering and
Remote Sensing, 65, 603–610.

Huang, J., Chen, D., & Cosh, M. H. (2009). Sub‐pixel reflectance unmixing in estimating
vegetation water content and dry biomass of corn and soybeans cropland using
normalized difference water index (NDWI) from satellites. International Journal
of Remote Sensing, 30, 2075–2104.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview
of the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sensing of Environment, 83, 195–213.

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environ-
ment, 25, 295–309.

Imanishi, J., Sugimoto, K., & Morimoto, Y. (2004). Detecting drought status and LAI of
two Quercus species canopies using derivative spectra. Computers and Electronics
in Agriculture, 43, 109–129.

Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a
crop water stress indicator. Water Resources Research, 17, 1133–1138.

Jacquemoud, S. (1990). PROSPECT: A model to leaf optical properties spectra. Remote
Sensing of Environment, 34, 74–91.

Jacquemoud, S., Baret, F., Andrieu, B., Danson, F. M., & Jaggard, K. (1995). Extraction of
vegetation biophysical parameters by inversion of the prospect plus sail models on
sugar beet canopy reflectance data— application to TM and AVIRIS sensors. Remote
Sensing of Environment, 52, 163–172.

Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., & Hosgood, B.
(1996). Estimating leaf biochemistry using the PROSPECT leaf optical properties
model. Remote Sensing of Environment, 56, 194–202.

Jolly, W. M. (2007). Sensitivity of a surface fire spread model and associated fire behav-
iour fuel models to changes in live fuel moisture. International Journal of Wildland
Fire, 16, 503–509.

Jurdao, S., Chuvieco, E., & Arevalillo, J. M. (2012). Modelling fire ignition probability
from satellite estimates of live fuel moisture content. The Journal of the Association
for Fire Ecology, 8, 77–97.

Jurdao, S., Yebra, M., Guerschman, J. P., & Chuvieco, E. (2013). Regional estimation of
woodland moisture content by inverting Radiative Transfer Models. Remote Sensing
of Environment, 132, 59–70.

Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., et al. (2002). The
MODIS fire products. Remote Sensing of Environment, 83, 244–262.

Keeley, J. E. (2004). Lessons from the October 2003 wildfires in Southern California.
Journal of Forestry, 102, 26–31.

Keeley, J. E., Safford, H., Fotheringham, C. J., Franklin, J., & Moritz, M. (2009). The 2007
southern California wildfires: Lessons in complexity. Journal of Forestry, 107,
287–296.

Keetch, J., & Byram, G. (1968). A Drought Index for forest fire control. Research paper.
SE-38. Southeastern Forest Experiment Station, Asheville, NC: USDA Forest Service.

Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and
near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159.

Koetz, B., Baret, F., Poilvé, H., & Hill, J. (2005). Use of coupled canopy structure dynamic
and radiative transfer models to estimate biophysical canopy characteristics. Remote
Sensing of Environment, 95, 115–124.

Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., & Lebed, L. (2003). AVHRR-based spectral
vegetation index for quantitative assessment of vegetation state and productivity:
Calibration and validation. Photogrammetric Engineering and Remote Sensing, 69,
899–906.

Kozlowski, T. T., Kramer, P. J., & Pallardy, S. (1991). The physiological ecology of woody
plants. San Diego: Academic Press.

Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for
land surface modeling. Agricultural and Forest Meteorology, 149, 2071–2081.

Kuusk, A. (2001). A two-layer canopy reflectance model. Journal of Quantitative Spec-
troscopy and Radiative Transfer, 71, 1–9.

Lawson, B. D., & Hawkes, B. C. (1989). Field evaluation of moisture content model
for medium-sized logging slash. In D. C. MacIver, H. Auld, & R. Whitewood (Eds.),
Proceedings of the 10th conference on fire and forest meteorology, Ottawa, ON, Canada
(pp. 247–257). Downsview, ON: Atmospheric Environment Service.

Leblon, B., Kasischke, E., Alexander, M., Doyle, M., & Abbott, M. (2002). Fire danger
monitoring using ERS-1 SAR images in the case of northern boreal forests. Natural
Hazards, 27, 231–255.

Lee, T. E., Miller, S. D., Turk, F. J., Schueler, C., Julian, R., Deyo, S., et al. (2006). The
NPOESS VIIRS Day/night visible sensor. Bulletin of the American Meteorological
Society, 87, 191–199.

Li, L., Cheng, Y. B., Ustin, S., Hu, X. T., & Riano, D. (2008). Retrieval of vegetation equiv-
alent water thickness from reflectance using genetic algorithm (GA)-partial least
squares (PLS) regression. Advances in Space Research, 41, 1755–1763.

Linn, R., Reisner, J., Colman, J. J., & Winterkamp, J. (2002). Studying wildfire behavior
using FIRETEC. International Journal of Wildland Fire, 11, 233–246.

Maki, M., Ishiahra, M., & Tamura, M. (2004). Estimation of leaf water status to monitor
the risk of forest fires by using remotely sensed data. Remote Sensing of Environ-
ment, 90, 441–450.

McArthur, A. G. (1962). Control burning in eucalypt forest. Canberra, Australian Capital
Territory: Commonwealth of Australia Forest and Timber Bureau, 31.

McArthur, A. G. (1967). Fire behaviour in eucalypt forests. Canberra, Australian Capital
Territory: Commonwealth of Australia Forest and Timber Bureau, 25.

Mell, W., Jenkins, M. A., Gould, J., & Cheney, P. (2007). A physics-based approach to
modelling grassland fires. International Journal of Wildland Fire, 16, 1–22.

Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit
using the relation between surface-air temperature and spectral vegetation
index. Remote Sensing of Environment, 49, 246–263.

Morvan, D., & Dupuy, J. L. (2004). Modelling the propagation of a wildfire through a
Mediterranean shrub using a multiphase formation. Combustion and Flame, 138,
199–210.

Nagler, P. L., Daughtry, C. S. T., & Goward, S. N. (2000). Plant litter and soil reflectance.
Remote Sensing of Environment, 71, 207–215.

Nelson, R. M. (2001).Water relations of forest fuels. In E. A. Johnson, & K.Miyanishi (Eds.),
Forest fires: Behavior and ecological effects (pp. 79–149). San Diego, Calif.: Academic
Press.

Newnham, G. J., Verbesselt, J., Grant, I. F., & Anderson, S. A. J. (2011). Relative Greenness
Index for assessing curing of grassland fuel. Remote Sensing of Environment, 115,
1456–1463.

North, P. R. J. (1996). Three-dimensional forest light interaction model using a Monte
Carlo method. IEEE Transactions on Geoscience and Remote Sensing, 34, 946–956.

Okin, G. S. (2007). Relative spectral mixture analysis — A multitemporal index of total
vegetation cover. Remote Sensing of Environment, 106, 467–479.

Okin, G. S., Clarke, K. D., & Lewis, M. M. (2013). Comparison of methods for estimation
of absolute vegetation and soil fractional cover using MODIS normalized
BRDF-adjusted reflectance data. Remote Sensing of Environment, 130, 266–279.

Oliveras, I., Gracia, M., Moré, G., & Retana, J. (2009). Factors influencing the pattern of
fire severities in a large wildfire under extreme meteorological conditions in the
Mediterranean basin. International Journal of Wildland Fire, 18, 755–764.

Paltridge, G. W., & Barber, J. (1988). Monitoring grassland dryness and fire potential in
Australia with NOAA/AVHRR data. Remote Sensing of Environment, 25, 381–394.

Pellizzaro, G., Duce, P., Ventura, A., & Zara, P. (2007). Seasonal variations of live moisture
content and ignitability in shrubs of the Mediterranean Basin, 633–641.

Peñuelas, J. I. F., Biel, C., Serrano, L., & Savé, R. (1993). The reflectance at the 950–970 nm
region as an indicator of plant water status. International Journal of Remote Sensing, 14,
1887–1905.

Peñuelas, J., Piñol, J., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration
by the reflectance Water Index WI (R900/R970). International Journal of Remote
Sensing, 18, 2869–2875.

Peterson, S., Roberts, D. A., & Dennison, P. E. (2008). Mapping live fuel moisture with MODIS
data: A multiple regression approach. Remote Sensing of Environment, 112, 4272–4284.

Pingheng, L., & Quan, W. (2011). Retrieval of leaf biochemical parameters using
PROSPECT inversion: A new approach for alleviating Ill-posed problems. Geoscience
and Remote Sensing, IEEE Transactions on, 49, 2499–2506.

Plucinski, M. P., Anderson, W. R., Bradstock, R. A., & Gill, A. M. (2010). The initiation of
fire spread in shrubland fuels recreated in the laboratory. International Journal of
Wildland Fire, 19, 512–520.

Qi, Y., Dennison, P. E., Spencer, J., & Riaño, D. (2012). Monitoring live fuel moisture
using soil moisture and remote sensing proxies. The Journal of the Association for
Fire Ecology, 8, 71–87.

467M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468

http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0215
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0215
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0220
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0220
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0220
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0720
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0720
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0225
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0230
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0230
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0230
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0235
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0235
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0235
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0240
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0240
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0240
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0245
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0245
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0245
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0725
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0725
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0725
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0255
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0255
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0260
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0260
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0260
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0265
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0265
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0265
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0270
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0270
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0730
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0730
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0730
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0275
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0275
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0280
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0280
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0280
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0285
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0285
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0285
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0290
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0290
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0290
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0290
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0295
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0295
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0295
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0300
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0300
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9020
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9020
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9020
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0305
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0305
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0310
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0310
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0315
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0315
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0315
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0315
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0320
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0320
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0325
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0325
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0325
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0330
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0330
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0330
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0335
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0335
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0335
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0340
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0340
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0345
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0345
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0350
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0350
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0350
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0735
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0735
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0355
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0355
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0360
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0360
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0360
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0365
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0365
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0365
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0365
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9005
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf9005
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0370
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0370
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0375
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0375
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0740
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0740
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0740
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0740
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0380
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0380
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0380
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0385
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0385
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0385
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0390
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0390
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0390
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0395
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0395
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0400
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0400
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0400
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0745
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0745
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0750
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0750
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0415
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0415
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0420
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0420
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0420
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0425
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0425
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0425
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0430
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0430
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0760
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0760
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0760
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0435
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0435
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0435
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0440
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0440
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0445
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0445
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0450
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0450
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0450
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0455
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0455
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0455
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0460
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0460
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0765
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0765
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0770
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0770
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0770
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0470
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0470
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0470
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0475
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0475
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0480
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0480
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0480
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0485
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0485
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0485
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0490
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0490
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0490


Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of
the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index
(TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid
regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1–12.

Riaño, D., Vaughan, P., Chuvieco, E., Zarco-Tejada, P., & Ustin, S. L. (2005). Estimation of
fuel moisture content by inversion of radiative transfer models to simulate equiv-
alent water thickness and dry matter content: Analysis at leaf and canopy level.
IEEE Transactions on Geoscience and Remote Sensing, 43, 819–826.

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998). Mapping
chaparral in the Santa Monica Mountains using multiple endmembers spectral
mixture models. Remote Sensing of Environment, 65, 267–279.

Roberts, D. A., Peterson, S., Dennison, P. E., Sweeney, S., & Rechel, J. (2006). Evaluation of
Aibone Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution
Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition
in a shrubland ecosystem in southern California. Journal of Geophysical Research,
111, GO4S02. http://dx.doi.org/10.1029/2005JG000113.

Romero, A., Aguado, I., & Yebra, M. (2012). Estimation of dry matter content in leaves
using normalized indexes and PROSPECT model inversion. International Journal of
Remote Sensing, 33, 396–414.

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels.
Ogden, Utah: USDA, Forest Service.

Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. H., & Harlan, J. C. (1974). Monitoring
the vernal advancement and retrogradation (Greenwave effect) of natural vegeta-
tion. Type III final report. Greenbelt, MD, USA: NASA/GSFC.

Schoenberg, F. P., Peng, R., Huang, Z., & Rundel, P. (2003). Detection of non-linearities
in the dependence of burn area on fuel age and climatic variables. International
Journal of Wildland Fire, 12, 1–6.

Serbin, G., Hunt, E. R., Daughtry, C. S. T., McCarty, G. W., & Doraiswamy, P. C. (2009).
An improved ASTER Index for remote sensing of crop residue. Remote Sensing, 1,
971–991.

Shimabukuro, Y. E., & Smith, J. A. (1991). The least-squares mixing models to generate
fraction images derived from remote sensing multispectral data. IEEE Transactions
on Geosciences and Remote Sensing, 29, 16–20.

Stow, D., Madhura, N., & Kaiser, J. (2006). Time series of chaparral live fuel moisture
maps derived from MODIS satellite data. International Journal of Wildland Fire, 15,
347–360.

Stow, D., & Niphadkar, M. (2007). Stability, normalization and accuracy ofMODIS-derived
estimates of live fuel moisture for southern California chaparral. International Journal
of Remote Sensing, 28, 5175–5182.

Stow, D., Niphadkar, M., & Kaiser, J. (2005). MODIS-derived visible atmospherically
resistant index for monitoring chaparral moisture content. International Journal of
Remote Sensing, 26, 3867–3873.

Thomas, J. R., Namken, L. N., Oerther, G. F., & Brown, R. G. (1971). Estimating leaf water
content by reflectance measurements. Agronomy Journal, 63, 845–847.

Trombetti, M., Riano, D., Rubio, M. A., Cheng, Y. B., & Ustin, S. L. (2008). Multi-temporal
vegetation canopy water content retrieval and interpretation using artificial neural
networks for the continental USA. Remote Sensing of Environment, 112, 203–215.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring
vegetation. Remote Sensing of Environment, 8, 127–150.

Tucker, C. J. (1980). Remote sensing of leaf water content in the near infrared. Remote
Sensing of Environment, 10, 23–32.

Ustin, S. L., Riaño, D., & Hunt, E. R. (2012). Estimating canopy water content from spec-
troscopy. Israel Journal Of Plant Sciences, 60, 9–23.

Vidal, A., Pinglo, F., Durand, H., Devaux-Ros, C., & Maillet, A. (1994). Evaluation of a
temporal fire risk index in Mediterranean forest from NOAA thermal IR. Remote
Sensing of Environment, 49, 296–303.

Viegas, D. X., Piñol, J., Viegas, M. T., & Ogaya, R. (2001). Estimating live fine fuels mois-
ture content using meteorologically-based indices. International Journal of Wildland
Fire, 10, 223–240.

Viegas, D. X., Soares, J., & Almeida, M. (in press). Combustibility of a mixture of live and
dead fuel components. International Journal of Wildland Fire (WF12031 Accepted 15
February 2013).

Viegas, D. X., Viegas, T. P., & Ferreira, A. D. (1992). Moisture content of fine forest fuels and
fire occurrence in central Portugal. International Journal of Wildland Fire, 2, 69–85.

Viney, N. R. (1991). A review of fine fuel moisture modelling. International Journal of
Wildland Fire, 1, 215–234.

Wang, L., Hunt, J. E. R., Qu, J. J., Hao, X., & Daughtry, C. S. T. (2011). Towards estimation
of canopy foliar biomass with spectral reflectance measurements. Remote Sensing
of Environment, 115, 836–840.

Wang, L., Hunt, E. R., Jr., Qu, J. J., Hao, X., & Daughtry, C. S. T. (2013). Remote sensing of
fuel moisture content from ratios of narrow-band vegetation water and dry-matter
indices. Remote Sensing of Environment, 129, 103–110.

Way, J. B., Paris, J., Dobson, M. C., McDonald, K., Ulaby, F. T., Weber, J. A., et al. (1991).
Diurnal change in trees as observed by optical and microwave sensors: The EOS syn-
ergism study. IEEE Transactions on Geoscience and Remote Sensing, GE-29, 807–821.

Weise, D. R., Hartford, R. A., & Mahaffey, L. (1998). Assessing live fuel moisture for fire
management applications. In T. L. Pruden, & L. A. Brennan (Eds.), Fire in ecosystem
management: Shifting the paradigm from suppression to prescription. Proceedings
from the 20th Florida Tall Timbers Fire Ecology Conference, 7–10 May 1996, Boise,
ID (pp. 49–55). Tallahassee, FL: Tall Timbers Research Station.

Weise, D. R., Zhou, X. Y., Sun, L. L., & Mahalingam, S. (2005). Fire spread in chaparral —
‘go or no-go?’. International Journal of Wildland Fire, 14, 99–106.

Weiss, M., Baret, F., Myneni, R. B., Pragnère, A., & Knyazikhin, Y. (2000). Investigation of
a model inversion technique to estimate canopy biophysical variables from spec-
tral and directional reflectance data. Agronomie, 20, 3–22.

Xanthopoulos, G., Maheras, G., Gouma, V., & Gouvas, M. (2006). Is the Keetch-Byram
drought index (KBDI) directly related to plant water stress? In D. X. Viegas (Ed.),
V international conference on forest fire research Figuera da Foz, Portugal. Amsterdam:
Elsevier BV.

Xanthopoulos, G., & Wakimoto, R. H. (1993). A time to ignition–temperature–moisture
relationship for branches of three western conifers. Canadian Journal of Forest
Research, 23, 253–258.

Yebra, M. (2008). Estimación del contenido de humedad de vegetación mediterránea a partir
de imágenes MODIS. Departamento de Geografía. Alcala de Henares: Universidad de
Alcala, 202.

Yebra, M., & Chuvieco, E. (2009a). Generation of a species-specific look-up table for fuel
moisture content assessment. IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 2, 21–26.

Yebra, M., & Chuvieco, E. (2009b). Linking ecological information and radiative transfer
models to estimate fuelmoisture content in theMediterranean region of Spain: Solving
the ill-posed inverse problem. Remote Sensing of Environment, 113, 2403–2411.

Yebra, M., Chuvieco, E., & Aguado, I. (2008a). Comparación entre modelos empíricos y
de transferencia radiativa para estimar contenido de humedad en pastizales: Poder
de generalización. Revista de Teledetección, 29, 73–90.

Yebra, M., Chuvieco, E., & Riaño, D. (2008b). Estimation of live Fuel Moisture Content
from MODIS images for fire risk assessment. Agricultural and Forest Meteorology,
148, 523–536.

Yilmaz, M. T., Hunt, E. R., Jr., Goins, L. D., Ustin, S. L., Vanderbilt, V. C., & Jackson, T. J.
(2008). Vegetation water content during SMEX04 from ground data and Landsat
5 Thematic Mapper imagery. Remote Sensing of Environment, 112, 350–362.

Zarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in veg-
etation with MODIS reflectance data and model inversion methods. Remote Sensing
of Environment, 85, 109–124.

Zahn, S. M., & Henson, C. (2011). A synthesis of fuel moisture collection methods and
equipment: A desk guide. 1151 1806P. San Dimas, CA: U.S. Department of Agricul-
ture, Forest Service, San Dimas Technology and Development Center.

Zhang, J., Wu, J. J., & Zhou, L. (2011). Deriving vegetation leaf water content from spec-
trophotometric data with orthogonal signal correction-partial least square regres-
sion. International Journal of Remote Sensing, 32, 7557–7574.

Zylstra, P. (2011a). Forest flammability: Modelling and managing a complex system.
School of physical, environmental and mathematical sciences (pp. 435). University
of New South Wales and Australian Defence Force Academy.

Zylstra, P. (2011b). Rethinking the fuel–fire relationship. In R. P. Thornton (Ed.), Bushfire
CRC & AFAC. Darling Harbour: Sydney Convention Centre.

468 M. Yebra et al. / Remote Sensing of Environment 136 (2013) 455–468

http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0495
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0495
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0495
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0495
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0500
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0500
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0500
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0500
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0505
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0505
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0505
http://dx.doi.org/10.1029/2005JG000113
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0510
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0510
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0510
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0780
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0780
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0785
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0785
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0785
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0515
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0515
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0515
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0520
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0520
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0525
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0525
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0525
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0530
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0530
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0530
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0535
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0535
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0535
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0540
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0540
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0540
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0545
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0545
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0550
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0550
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0550
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0555
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0555
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0560
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0560
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0790
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0790
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0565
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0565
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0565
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0570
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0570
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0570
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0795
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0795
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0795
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0575
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0575
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0580
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0580
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0585
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0585
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0585
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0590
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0590
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0590
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0595
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0595
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0800
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0800
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0800
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0800
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0800
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0600
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0600
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0605
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0605
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0605
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0805
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0805
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0805
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0805
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0610
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0610
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0610
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0810
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0810
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0810
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0615
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0615
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0615
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0620
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0620
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0620
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0625
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0625
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0625
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0630
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0630
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0630
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0635
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0635
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0640
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0640
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0640
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf1225
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf1225
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf1225
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0645
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0645
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0645
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0815
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0815
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0815
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0650
http://refhub.elsevier.com/S0034-4257(13)00183-1/rf0650

