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Abstract
1. The live fuel moisture content (LFMC) is an important precondition for wildfire 

activity, yet it remains challenging to predict LFMC due to the dynamic interplay 
between atmospheric and hydrological conditions that determine the plant's ac-
cess to, and loss of water.

2. We monitored LFMC and a range of plant water- use traits (predawn and mid-
day leaf water potentials [Ψleaf]), leaf traits (specific leaf area [SLA]), hydrological 
status (soil water content [SWC] in the shallow layer and full profile) and atmos-
pheric variables (air temperature, vapour pressure deficit [VPD], CO2 concentra-
tions) in a mature eucalypt woodland at the Eucalyptus Free- Air CO2 Enrichment 
(EucFACE) facility during a drought.

3. We combined plant traits, hydrological status and atmospheric variables into a 
biophysical model to predict LFMC dynamics, and compared these with predic-
tions of LFMC based on a satellite model and established relationships between 
Ψleaf and LFMC from pressure– volume curves.

4. Predawn Ψleaf could be well predicted from changes in SWC, but variation in 
midday Ψleaf and LFMC were more responsive to atmospheric than hydrological 
variables. The biophysical model explained up to 89% of variability in LFMC and 
outperformed established approaches to predict LFMC. SLA was the single most 
important variable to predict LFMC, followed by VPD, which explained 33% of 
the remaining variability in LFMC.

5. Our study demonstrates that the co- variation of plant traits and atmospheric and 
hydrological conditions affect LFMC during drought, suggesting a new way for-
ward for predicting LFMC by combining biophysical and satellite- based models of 
LFMC with seasonal forecasts of meteorological and hydrological variables.
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1  |  INTRODUC TION

Recent years have been characterized by an increase in the frequency 
of megafires in terms of burn area across forest ecosystems (Abram 
et al., 2021; Boer et al., 2020; Duane et al., 2021; Fidelis et al., 2018; 
Nolan et al., 2021; Varga et al., 2022). These events have been at-
tributed to a combination of climate warming and associated changes 
in fire weather and ignition probability; antecedent droughts that re-
sulted in unusually dry fuels and high- severity fires; and changes in 
land management and associated increases in fuel load (Abatzoglou 
et al., 2018; Canadell et al., 2021; Collins et al., 2021; Fidelis et al., 
2018; Keeley & Syphard, 2021; Nolan et al., 2021; Stephens et al., 
2014; Varga et al., 2022; Williams et al., 2019). Typically, multiple 
preconditions were exceeding moderate thresholds of fire risk rather 
than individual conditions reaching extreme magnitudes (Khorshidi 
et al., 2020), although the Australian 2019/2020 ‘Black Summer’ 
bushfire season exemplified extreme magnitudes in multiple drivers 
(Nolan et al., 2021).

The recent megafires in Australian forests coincided with re-
cord low moisture levels in live fuels and average fuel loads (Nolan 
et al., 2021). The occurrence of widespread drought prior to major fire 
seasons has fueled efforts to transfer approaches from plant physi-
ology to fire ecology to advance our understanding of how changes 
in plant water relations during drought affect the flammability of liv-
ing canopy fuels and thus wildfire risk (Jolly & Johnson, 2018; Nolan 
et al., 2016, 2020; Pivovaroff et al., 2019; Resco de Dios, 2020; 
Rossa & Fernandes, 2018; Scarff et al., 2021). While established 
modelling approaches exist to predict the moisture content of dead 
fuels due to their close relationship with atmospheric meteorolog-
ical conditions (Matthews, 2013; Ray et al., 2010; Resco de Dios 
et al., 2015) and soil moisture (Zhao et al., 2021, 2022), the moisture 
content of living fuels (LFMC; i.e. the tissue's water mass per unit dry 
mass) remains challenging to predict due to the dynamic interplay 
between hydrological and atmospheric conditions that determine 
the plant's access to, and loss of water (Cochard et al., 2021). In ad-
dition to leaf water mass, LFMC is also influenced by the tissue's dry 
mass, which is determined by net primary productivity, foliar starch, 
sugar and crude fat contents and leaf phenology (Brown et al., 2022; 
Jolly et al., 2014). Thus, the co- variation of leaf water and dry mass 
can introduce temporal fluctuations of LFMC at daily, seasonal, and 
inter- annual scales. As community compositions vary spatially and 
plants respond dynamically to changes in growing conditions, veg-
etation can introduce significant influence on LFMC and species- 
specific calibrations might be needed to predict variation in LFMC 
from environmental conditions (Jolly et al., 2014; Nolan et al., 2018, 
2020; Pivovaroff et al., 2019; Qi et al., 2016; Scarff et al., 2021). For 
example, key hydraulic traits such as leaf- saturated moisture content 
and leaf water potentials (particularly at turgor loss point [TLP]) have 
been identified to introduce large variation in LFMC between woody 

species in south- eastern Australia (Nolan et al., 2020, 2022; Scarff 
et al., 2021) and Spain (Balaguer- Romano et al., 2022). In contrast, 
only a few studies have assessed the influence of leaf traits such as 
specific leaf area (SLA; the ratio of leaf area to leaf mass) on spatial 
and temporal predictions of LFMC and confirmed its influence on in-
stantaneous LFMC across plant functional types (Brown et al., 2022) 
or on maximum LFMC at the species level (Nolan et al., 2022). This 
is surprising, given that SLA is an important indicator of the fitness 
of a species in their environment (Poorter et al., 2009) and SLA and 
LFMC both incorporate leaf dry weights in the denominator.

In Australian forests and woodlands, LFMC has been linked to 
variation in leaf flammability by modifying ignition times (Scarff 
et al., 2021) and cumulative area burnt by wildfire (Dennison & 
Moritz, 2009; Nolan et al., 2016; Yebra et al., 2013). Rises in vapour 
pressure deficit (VPD) cause declines in the moisture content of 
live fuels and increases in the flammability of dead fuels, both of 
which have been positively correlated with increases in burn area in 
forested ecosystems in Australia, North America and Europe (Boer 
et al., 2017; Clarke et al., 2022; Nolan et al., 2016; Rao et al., 2022; 
Resco de Dios et al., 2022; Williams et al., 2019). A number of recent 
studies focused on disentangling the importance of VPD for global 
wildfire risk, e.g. by influencing burn area (Rao et al., 2022), sustain-
ing active fire when flammable conditions are sustained through the 
night (Balch et al., 2022; Chiodi et al., 2021) or by increasing the 
frequency of days above critical forest flammability thresholds due 
to rising temperatures with a changing climate (Clarke et al., 2022). 
Models that predict instantaneous variation in LFMC based on hy-
drological variables (such as soil moisture; Vinodkumar et al., 2021) 
or meteorological drought indices (Pellizzaro et al., 2007; Ruffault 
et al., 2018; Viegas et al., 2001) fail to account for dynamic plant 
physiological adjustments and species- specific plant water- use 
strategies or leaf traits, and to our knowledge the combined influ-
ence of plant traits, atmospheric and hydrological variables on the 
instantaneous variability in LFMC have not been assessed anywhere 
in forest ecosystems in Australia, or elsewhere.

Remotely sensed data provide an opportunity for estimating 
LFMC over large areas at fine spatial and temporal resolutions (Cunill 
Camprubí et al., 2022; Nolan et al., 2016; Yebra et al., 2018), but 
species- specific calibrations are still required to link remotely sensed 
estimates of vegetation water content to LFMC (Yebra et al., 2013). 
Models of LFMC based on spectral observations hold promise to 
overcome this gap, with good results in ecosystems where species- 
specific calibration and validation data are available (Yebra & 
Chuvieco, 2009; Yebra et al., 2013, 2018). Moreover, soil moisture- 
based relationships of LFMC (Vinodkumar et al., 2021) might enable 
near- term to seasonal forecasts of continental LFMC, as forecasts 
of hydrological variables at high spatial resolution are being inte-
grated into Australia's national ensemble forecasting system (Vogel 
et al., 2021). Yet, the in situ variability of plant traits that control the 

K E Y W O R D S
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    |  721Functional EcologyGRIEBEL et al.

moisture content of living fuels remains to be tested in many ecosys-
tems, particularly during extreme environmental conditions such as 
severe drought.

We monitored LFMC and a range of plant water- use traits (pre-
dawn and midday leaf water potentials [Ψleaf]), leaf traits (SLA and 
leaf mass per leaf area [LMA]), hydrological status (soil water con-
tent [SWC] in the shallow layer and full profile) and atmospheric 
variables (air temperature, VPD and CO2 concentrations) in a ma-
ture eucalypt woodland at the Eucalyptus Free- Air CO2 Enrichment 
(EucFACE) facility. The observation period included a severe 
drought that directly preceded the ‘Black Summer’ bushfires in 
southeastern Australia (2019/2020). EucFACE is Australia's only 
CO2- enrichment experiment in a mature dry- sclerophyll wood-
land, providing us not only with the unique opportunity to assess 
the influence of elevated atmospheric CO2 concentrations (eCO2) 
on plant traits during a severe drought, but also to determine how 
increases in future CO2 concentrations will affect fuel moisture, a 
key component of wildfire risk, based on in situ observations from 
mature trees. Elevated CO2 is predicted to increase organic sol-
ute concentrations in leaves (Li et al., 2018; Zheng et al., 2019) 
and leaf thickness due to greater carbon accumulation per unit 
leaf area (Ainsworth & Long, 2005; Epron et al., 1996; Wujeska- 
Klause et al., 2019a). Thus, eCO2 should in theory affect leaf dry 
matter content and plant water- use traits, both of which would 
affect the rate of decline in leaf water potentials during drought. 
Moreover, eCO2 can increase plant moisture status during drought 
(Saxe et al., 1998), suggesting that LFMC might be maintained at a 
higher level under eCO2 in the face of drought as well.

The aims of this study were to (i) identify environmental condi-
tions that influence the temporal dynamics of plant water- use traits, 
leaf traits and LFMC, (ii) determine if eCO2 influences the temporal 
variability of plant traits and LFMC, (iii) derive a biophysical model 
that predicts variation in LFMC based on changes in plant traits, 
hydrological and atmospheric conditions and (iv) compare the bio-
physical model with existing approaches to predict LFMC based on 
a satellite model (Rozas- Larrondo et al., 2021) and pressure– volume 
curves (linear and two- phased p– v curve model; Nolan et al., 2022).

We hypothesize that (i) variation in predawn Ψleaf and LFMC can 
be predicted from SWC, whereas midday Ψleaf and LFMC will be 
more strongly influenced by atmospheric variables, (ii) stomatal clo-
sure in response to eCO2 leads to less negative Ψleaf and, thus, higher 
LFMC and (iii) concurrent variation in SLA and Ψleaf will become the 
dominant influence on instantaneous LFMC when soil moisture be-
comes limiting during drought.

2  |  MATERIAL S AND METHODS

2.1  |  Site description and experimental design

Data were collected at the Eucalyptus Free- Air CO2 Enrichment 
(EucFACE) facility located in remnant Cumberland Plain Woodland 
near Richmond, NSW, Australia (33°37′S and 150°44′E, 23 m 

elevation). Permission was not needed for fieldwork and the site is 
fully described elsewhere (Duursma et al., 2016; Ellsworth et al., 2017; 
Gimeno et al., 2016). Briefly, the vegetation consists of an open can-
opy dominated by Eucalyptus tereticornis Sm. and an understory domi-
nated by grasses with a sparse layer of sclerophyllous plants, short 
trees and shrubs. The leaf area index varies seasonally between 1.2 
and 2.2 m2 m−2, with new shoots emerging in late spring to early sum-
mer (Duursma et al., 2016; Wujeska- Klause et al., 2019a). The soil is a 
well- draining, nutrient- poor Clarendon loamy sand (Crous et al., 2015).

The site is characterized by a humid temperate to subtropical cli-
mate, with a mean daily maximum temperature of 24.0°C, and a mean 
annual rainfall of 796 mm over the 1960– 2021 period. Soil drought be-
tween 2017 and 2020 coincided with numerous heatwaves in the sum-
mers of 2017/2018 and 2019/2020 (Griebel et al., 2022). The EucFACE 
experiment consists of six circular plots of 25 m diameter (hereafter 
termed ‘rings’). Each ring is surrounded by a 28 m tall fibre- glass frame 
with perforated pipes that release CO2 (Ellsworth et al., 2017). Since 
February 2013, three rings have been continuously exposed to an am-
bient CO2 concentration of ≈400 μmol mol−1 (hereafter termed ‘aCO2’) 
and three rings to ≈550 μmol mol−1 (aCO2 + 150 μmol mol−1; hereafter 
termed ‘eCO2’). Each ring is equipped with a crane that facilitates ac-
cess to the upper tree canopy.

2.2  |  Leaf- level measurements

Leaf water potentials and leaf traits were collected from May 2012 
in regular sampling campaigns targeting the months of February, 
May and October each year. In each campaign, we sampled fully ex-
panded, mature leaves from the upper canopy of three co- dominant 
trees per ring. Three replicate shoots per tree were collected and 
stored in zip seal bags in a cooler during transport before midday 
leaf water potentials (Ψleaf) were measured to the nearest 0.1 MPa 
with a pressure chamber (1505D; PMS Instrument Company) imme-
diately after sampling was completed. Since the cranes can only be 
operated during daytime, predawn Ψleaf were collected from the mid 
to upper portion of the canopy using 23 m tall walk- up scaffolding 
units within each ring (two- three trees were within reach from each 
scaffold). All leaves that were sampled for water potentials were 
scanned to calculate leaf area (LA), before they were dried in an oven 
at 105°C for at least 48 h (Matthews, 2010) to obtain dry weights 
(Dw). We then calculated the SLA (m2 kg−1) as:

We further calculated LMA (g m−2), which is the inverse of SLA. We 
commenced more frequent sampling of leaf- level measurements and 
concomitant LFMC in August 2018 to capture the dry period during 
the drought as well as the wet period following substantial rains in 
early 2020. Thus, all leaves that were sampled since August 2018 were 
also weighed to obtain fresh weights (Fw), and we then used the Fw and 
Dw to calculate live fuel moisture content (LFMC in %):

(1)SLA =
LA

Dw

.
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722  |   Functional Ecology GRIEBEL et al.

We used all available data from 2012 to 2021 to investigate the sea-
sonality of Ψleaf and their relationship with SWC and data from 2018 
to 2021 to investigate the seasonality of LFMC and SLA as well as 
relationships between LFMC and SWC, and between LFMC and leaf 
traits. For all analyses, trees were nested within plots when averaging 
by CO2 treatment, and the standard error (SE) refers to the standard 
error of the mean when averaging campaigns by treatment (3 rings 
per treatment, thus n = 3). Note that prolonged lockdowns and facility 
closures during the coronavirus pandemic restricted sampling in the 
2020– 2021 period (Figures S.1– S.3).

2.3  |  Soil moisture and atmospheric measurements

Volumetric water content (VWC in %) between 0.25 and 4.5 m depth 
was measured in 25 cm depth increments using neutron probes at 
approximately monthly intervals since May 2012. Measurements 
were taken at two locations within each ring and subsequently aver-
aged by ring and treatment. Monthly measurements were further 
re- sampled to daily using linear interpolation accounting for irregular 
spacing between observations. Measurements of VWC were con-
verted to SWC (mm) and summed for the shallow layer (0– 1 m depth; 
SWCshallow) and the full soil profile (0– 4.5 m depth; SWCtotal). We 
further derived daily minimum and daily maximum air temperature 
(Tair in °C) and VPD from half- hourly measurements at the nearby 
Cumberland Plain flux tower (AU- Cum; ≈1.5 km from study site; 
Griebel et al., 2020).

2.4  |  Statistical analyses of CO2 effects and  
individual relationships between leaf- level  
measurements, soil moisture and atmospheric  
variables

EucFACE has three replicate treatment plots for ambient and ele-
vated CO2 treatments, with three sampled trees per ring. Trees were 
nested within rings as random factors for mixed- model repeated- 
measures analysis of variance (‘lme4’ package; Bates et al., 2015), 
which was used to assess differences in CO2 treatments and season 
(spring, summer, autumn and winter) for predawn and midday Ψleaf, 
SLA and LFMC. We accounted for SWC, VPD and sampling height as 
covariates in our models. If interactions in the mixed- model repeated 
measures ANOVA were significant, then differences between means 
were followed up with a Tukey HSD post hoc test (glht from the 
‘multcomp’ package; Hothorn et al., 2008). We used Levene's test (lev-
eneTest from the ‘car’ package; Fox & Weisberg, 2019) to assess the 
homogeneity of variances. If applicable, data were log- transformed 
to correct for non- normal data distributions and residual plots con-
firmed constant variance in all three cases. We further assessed the 
relationships between Ψleaf and SWC, LFMC and shallow SWC, and 

LFMC and SLA using self- starter functions for nonlinear regressions 
from the ‘aomisc’ package (Onofri, 2020) and the ‘drc’ package (Ritz 
et al., 2015). The relationship between predawn Ψleaf and SWC in 
the full profile was best described using asymptotic regressions, 
whereas all other relationships between Ψleaf and SWC were best 
described using logarithmic regressions. We further used a second- 
order polynomial function to assess relationships between LFMC 
and shallow SWC, and exponential growth functions to assess re-
lationships between LFMC and SLA. All statistical analyses were 
performed in R version 4.0.3 (R Core Team, 2020) and due to the 
low replication associated with FACE sites (see Gimeno et al., 2016), 
p- values <0.1 were considered statistically significant.

2.5  |  Predictions of live fuel moisture content from 
a statistical biophysical model

We used random forest regression models (Breiman, 2001) to pre-
dict LFMC based on hydrological status (SWCshallow, SWCtotal), at-
mospheric variables (Tair, VPD, CO2 concentrations), plant water- use 
traits (predawn and midday Ψleaf) and leaf traits (SLA, LMA). We used 
the ‘ranger’ package version 0.13.1 (Wright & Ziegler, 2017) and used 
minimum VPD/Tair for predawn observations, and maximum VPD/Tair 
for midday observations. We tested the model performance with VPD 
instead of Tair, SWCshallow instead of SWCtotal, and SLA instead of LMA. 
We discarded Tair due to its high correlation with VPD (Spearman's 
r > 0.75; Figure S.4), and because the models had a slightly lower R2 
and larger RMSE when using Tair instead of VPD, SWCtotal instead of 
SWCshallow, and LMA instead of SLA. Including Ψleaf did not improve 
model performance either (presumably because of the strong correla-
tion with shallow and deep SWC; Figures S.4 and S.5), so Ψleaf were 
discarded as well. Thus, we trained the final models using VPD, SLA, 
SWCshallow and CO2 treatment with 500 decision trees and 3 (n − 1) 
variables to possibly split at each node. Variable importance was as-
sessed with the ‘vip’ package (Greenwell & Boehmke, 2020) using the 
‘impurity’ mode. Since Random Forest is an ensemble learning method 
based on many independent classification and regression trees, each 
run produces slightly different outcomes. Hence, we set the seed to 
‘1234’ to generate reproducible model runs for our reported metrics 
(R2 and RMSE), and have included a sensitivity analysis that compares 
the R2 and associated RMSE for 1000 randomly selected seeds in 
the appendix (Figure S.6). We then compared how our predictions of 
LFMC from the statistical biophysical model compare against predic-
tions of LFMC based on a satellite model (see Section 2.6) and from 
established relationships between Ψleaf and LFMC from pressure– 
volume curves (see Section 2.7).

2.6  |  Predictions of live fuel moisture content from 
a satellite model

We used reflectance data from Sentinel 2A and Sentinel 2B sat-
ellites to calculate LFMC (herein referred to as satellite model). 

(2)LFMC =

(

Fw − Dw

)

Dw

× 100.
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    |  723Functional EcologyGRIEBEL et al.

Sentinel 2 data were obtained from Digital Earth Australia (DEA), 
which provides analysis- ready data that have been corrected for 
position, terrain, radiometry, atmosphere and sun- sensor geometry 
(Dhu et al., 2017). We selected the satellite images that contained 
the EucFACE rings and were closest in time to each LFMC obser-
vation with a maximum time- lapse of ±10 days. We use methods 
developed by Rozas- Larrondo et al. (2021) to compute LFMC using 
the Sentinel- 2 data. The methodology comprises a Random Forest 
Regressor that establishes a relationship between seven Sentinel- 2 
reflectance bands and estimated LFMC values derived from MODIS 
(Yebra et al., 2018). Rozas- Larrondo et al. (2021)'s methodology is 
under operationalisation by Geoscience Australia and the code is 
publicly available on Github(https://github.com/ANU- WALD/senti 
nel2_fmc). Once LFMC was computed, the values for a given ring 
were extracted from each scene using the average value of a 2 × 2 
pixel kernel located at the centre of each ring (Figure S.7). A 2 × 2 
window was used to reduce the potential noise due to residual at-
mospheric effects and georeferencing errors and because it matches 
with the size of the rings (25 m diameter). Note that the satellite 
model will provide a plot- integrated estimate of LFMC across each 
ring, which includes a mixture of overstorey and understorey spe-
cies due to the spatial resolution of the windows. Since our direct 
observations of LFMC are only sourced from E. tereticornis in the 
overstorey, this will likely increase the bias when comparing tree- 
based observations of LFMC with plot- based predictions from the 
satellite model.

2.7  |  Predictions of live fuel moisture content from 
pressure– volume curves

We further assessed whether seasonal observations of LFMC 
could be predicted from Ψleaf using pressure– volume curves (p– v 
curves; Nolan et al., 2020). p– v curves describe changes in relative 
leaf water content with Ψleaf on a dehydrating cut shoot (Tyree & 
Hammel, 1972) but can also characterize changes in LFMC with 
Ψleaf (Nolan et al., 2020). We generated p– v curves at EucFACE on 
one to two leaves per tree, from a total of 26 trees, collected during 
drought (June and October 2018) and during a wet summer (January 
2022). Each leaf was rehydrated to saturation before shoots were 
dehydrated on a bench while Ψleaf and leaf mass were measured pe-
riodically (ranging from every few minutes when leaves were close 
to full turgor to >1 h when leaves were approaching very low water 
potentials). We used a Scholander- type pressure chamber for Ψleaf 
measurements. Once the p– v curves were completed, leaves were 
oven- dried for 48 h at 105°C to obtain the dry weight, and LFMC 
was calculated for each measurement during the dry- down period 
following Equation (2). In a study at the adjacent Cumberland Plain 
flux tower site (≈1.5 km from the study site), Nolan et al. (2022) 
found that the linear model of LFMC and Ψleaf outperformed the 
two- phase relationship that uses separate fits for above/below the 
TLP when using p– v curves to predict seasonal variation in LFMC. 
We also assessed both the two- phase model and a simpler linear 

model to predict LFMC as a function of Ψleaf for E. tereticornis at 
EucFACE. Applying the approach in Nolan et al. (2022) to our p– v 
curves, we calculated LFMC from field observations of Ψleaf using 
the following equations:

Since we found no significant effect of CO2 treatment on Ψleaf or LFMC 
(see Section 3.1), we combined the leaves from all trees to establish the 
relationships with Equations (3)– (5).

3  |  RESULTS

3.1  |  Leaf traits vary seasonally but not with 
atmospheric CO2

All examined leaf traits displayed clear seasonal variability (Figure 1), 
but we found no significant effect of CO2 treatment on Ψleaf, SLA or 
LFMC when season was included as a factor (p- values >0.1 for all 
analyses). Predawn and midday Ψleaf were lowest in the drier months 
(spring and winter) and increased in the wetter months (summer and 
autumn; Figure S.8). SLA and LFMC were lowest in spring and high-
est in summer, and both variables showed little variation between 
the remaining seasons.

3.2  |  Soil water content controls variation in 
predawn Ψ leaf

Predawn Ψleaf decreased from −0.1 MPa during high SWC to −1.9 MPa 
when the SWC was lowest in the shallow layer (Figure 2a) and the full 
profile (Figure 2b). The total SWC within the full profile alone explained 
69%– 76% of variability in predawn Ψleaf for eCO2 and aCO2 treatments, 
which was reduced to 65% and 70% (for eCO2 and aCO2, respectively) 
when restricting the total SWC to the shallow layer (Figure 2a). In con-
trast, midday Ψleaf decreased less strongly with decreasing SWC (be-
tween −1.2 and −2.8 MPa), and SWC alone was only able to explain up 
to 43% of variation in midday Ψleaf with no notable difference when 
including the full profile over the shallow layer.

3.3  |  Specific leaf area is the single most important 
predictor of live fuel moisture content

LFMC varied between 80% and 160% for the duration of the ex-
periment (Figure 3), which included the peak of the drought and a 
subsequent re- wetting period. In contrast, shallow SWC varied more 

(3)LFMClinear =
(

8.71Ψleaf

)

+ 118.6.

(4)LFMCaboveTLP =
(

3.91Ψleaf

)

+ 114.9.

(5)LFMCbelowTLP =

((

− 1

Ψleaf

)

− 0.0283

)

∕0.0038.
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than twofold (between 94 and 230 mm; Figure 3a) and SLA ranged 
from 3.9 to 5.8 m2 kg−1 for the corresponding observation dates 
(Figure 3b). The variation in SWC explained up to 41% of the varia-
tion in predawn LFMC, which decreased to 22% for midday LFMC. 
Yet, SLA alone was able to explain between 82% of midday LFMC 
in aCO2 treatments and 98% of predawn LFMC in eCO2 treatments 
(Figure 3b). The range of observed SLA and LFMC values was greater 

under eCO2 than aCO2 concentrations due to lower LFMC in eCO2 
treatments during particularly dry conditions (Figure 3a).

When combining plant traits, hydrological status and atmo-
spheric variables into a biophysical model (Figure 4) we were able to 
explain 89% of variability in predawn LFMC (RMSE = 6.67) and 76% 
of variability in midday LFMC (RMSE = 5.81) when using only shal-
low SWC, VPD, SLA and CO2 treatment. Adding Ψleaf, or replacing 

F I G U R E  1  Seasonal variability 
(means ± SE) of predawn and midday leaf 
water potentials (Ψleaf in MPa; top row), 
specific leaf area (SLA in m2 kg−1; panel c) 
and live fuel moisture content (LFMC in %; 
panel d) for ambient (aCO2; open symbols) 
and elevated (eCO2; closed symbols) CO2 
treatments.
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F I G U R E  2  Relationship between leaf water potentials (Ψleaf in MPa) and soil water content (SWC in mm) for ambient (aCO2; open 
symbols) and elevated (eCO2; closed symbols) CO2 treatments for the shallow layer (0– 1 m depth; panel a) and the full profile (0– 4.5 m 
depth; panel b). Shown are means ± SE, and predawn (midday) measurements are symbolized by rhombus (circles).
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VPD with Tair, SWCshallow with SWCtotal, and SLA with LMA did not 
increase the percent of variance explained by the model, and neither 
did combining predawn and midday observations into one model 
(R2 = 0.89 and RMSE = 6.76; Figure S.9). The single most important 
variable to explain variation in predawn and midday LFMC was SLA, 
with much reduced variable importance for VPD (33% for predawn 
and 32% for midday LFMC) and SWC (5% for predawn and 11% for 
midday LFMC) compared with SLA (Figure 4b). Excluding SLA from 
the models substantially reduced the percent of variance explained 
by all models (full model: R2 = 0.61 and RMSE = 12.87; Figure S.10, 
predawn model: R2 = 0.71 and RMSE = 10.89 and midday model: 
R2 = 0.59 and RMSE = 7.58; Figure S.11), and VPD became the most 
important variable to explain the variability of LFMC in all models. 
CO2 treatment was of negligible importance in all models (<5% com-
pared with most important variable; Figure 4 and Figures S.9– S.11).

3.4  |  Model comparison for predicting midday live 
fuel moisture content

When comparing observations of midday LFMC at EucFACE against 
predictions using the random forest model and the published mod-
els (two p– v curve models; Nolan et al., 2022 and a satellite model; 
Yebra et al., 2018), the random forest model outperformed the 
published models (Figure 5 and Table S.1). Thereafter, the linear 
p– v curve model had slightly lower mean absolute error, root mean 
square error and model bias than the two- phase p– v curve model, 
but both models had an overall narrow prediction range that was 

unable to capture the high and low range of LFMC observations. 
Despite slightly higher bias metrics for the satellite model, the satel-
lite model was able to capture a greater range of LFMC observations 
than the p– v curve models. Yet the satellite model tended to under- 
predict LFMC, particularly when LFMC was low. Overall, the random 
forest model had only a marginally positive bias (0.9%– 1.4%), while 
the satellite model and the p– v curve model had a larger bias but in 
opposite directions (11.2% to 18.1% and −0.3% to −7.6%, respec-
tively). Furthermore, the p– v curve models performed slightly bet-
ter for ambient than elevated CO2 treatments, whereas the satellite 
model performed better for elevated than ambient CO2 treatments. 
Differences in model performance between treatments were only 
marginal for the random forest model.

4  |  DISCUSSION

Our study highlights that incorporating dynamic variation in SLA in 
combination with hydraulic and atmospheric variables substantially 
improves predictions of LFMC during sustained drought periods. 
SLA was the single most important predictor of LFMC during the 
observation period. Ultimately, the combination of leaf traits with 
hydrological and atmospheric variables could explain up to 89% 
of variability in temporal LFMC dynamics. Due to the importance 
of leaf traits for predicting LFMC at our study site, the biophysical 
model clearly outperformed existing approaches to model LFMC 
that do not take dynamic transformations of leaf traits into ac-
count. VPD was the second most important variable after SLA for 

F I G U R E  3  Relationship between live fuel moisture content (LFMC in %) and soil water content from 0 to 1 m depth (in mm; panel a) or 
specific leaf area (SLA in m2 kg−1; panel b) for ambient (aCO2; open symbols) and elevated (eCO2; closed symbols) CO2 treatments. Shown are 
means ± SE, and predawn (midday) measurements are symbolized by rhombus (circles).
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predicting predawn and midday LFMC, highlighting the critical role 
of atmospheric moisture demand in controlling instantaneous LFMC 
and associated wildfire risk. Contrary to our hypotheses, elevated 
atmospheric CO2 concentrations did not exert any significant influ-
ence on Ψleaf, SLA or LFMC dynamics. Nonetheless, eCO2 concen-
trations may complicate wildfire risk predictions by extending the 
range in SLA and LFMC during particularly wet or dry periods.

4.1  |  Why does specific leaf area exert such strong 
control on live fuel moisture content?

Our study highlights the importance of leaf phenology and plant 
physiological adjustments in response to water stress for instan-
taneous predictions of predawn and midday LFMC in this mature 

eucalypt woodland. SLA indicates the leaf- level construction cost of 
light interception, making it a key trait that influences leaf life span 
and plant growth, and an important indicator of species fitness in 
their environment (Falster et al., 2018; Gutschick & Wiegel, 1988; 
Poorter et al., 2009; Wright et al., 2004). Efforts are ongoing to un-
derstand the physiological processes that regulate the spatiotempo-
ral variation of SLA (Wujeska- Klause et al., 2019b).

Environmental conditions exert strong controls on SLA, par-
ticularly radiation, atmospheric conditions (CO2 concentrations 
and air temperature) and nutrient and water availability (Poorter 
et al., 2009). Crous et al. (2021) demonstrated that shade resulted 
in 13% lower LMA in lower vs. upper canopy leaves at the EucFACE 
experiment, and we observed 25% higher SLA during predawn sam-
pling times compared with midday (Figure S.2). This could be related 
to sampling from different canopy positions (see Section 2.2) or the 
ageing process of mature leaves. Leaf age affects the photosynthetic 
capacity of E. tereticornis (Wujeska- Klause et al., 2019a), which likely 
contributed to seasonal and annual variation in SLA (Figure S.2; 
Figure 1). Moreover, fewer leaves might have emerged during the 
drought (Griebel et al., 2022), leading to extended life spans of ma-
ture leaves that further exaggerated the overall range in SLA.

Our study clearly identified the importance of SLA, and thus of 
variation in tissue dry matter content, for controlling temporal vari-
ation in LFMC dynamics in a temperate eucalypt forest (Figure S.3). 
This strong correlation is not surprising given that SLA and LFMC both 
incorporate leaf dry weights in the denominator (see Equations 1 and 

F I G U R E  4  Predictions vs. observations (means ± SE) of live fuel 
moisture content (LFMC in %; panel a) and variable importance 
scaled to the most important variable in descending order (panel 
b) for the predawn and midday models. Assessed variables include 
specific leaf area (SLA in m2 kg−1), vapour pressure deficit (VPD 
in kPa), soil water content within the 0– 1 m layer (SWC in mm) 
and CO2 treatment (ambient vs. elevated CO2). Predawn (midday) 
measurements are symbolized by rhombus (circles).
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2). We expect SLA to remain an important predictor for LFMC dynam-
ics in other ecosystems, as Jolly et al. (2014) illustrated that pheno-
logical changes in leaf dry mass were a stronger predictor of seasonal 
LFMC dynamics than changes in leaf water content for Pinus contorta. 
Furthermore, Brown et al. (2022) highlighted that biomass fluctuations 
were most important for predicting LFMC in a deep- rooted species 
(Pseudotsuga menziesii), whereas changes in SWC were more important 
than SLA for shallow- rooted species. In addition, Nolan et al. (2022) 
highlighted the correlation between SLA and maximum LFMC of 16 
species in Australian forests across a large climatic gradient and iden-
tified much larger variability in SLA between species (≈3.5– 8 m2 kg−1) 
compared with the temporal variability of midday SLA within our ex-
amined species (3.9– 5.8 m2 kg−1). This suggests that the wider range 
of variation in SLA across species and aridity gradients will ultimately 
determine the upper limits of landscape- scale variability in LFMC.

SLA and LMA are widely measured traits that are commonly avail-
able in plant trait databases such as AusTraits (Falster et al., 2021), 
TRY (Kattge et al., 2020), or GLOPNET (Reich et al., 2007), whereas 
LFMC is a trait not nearly as common (GlobeLFMC database; Yebra 
et al., 2019). Thus, the high correlation of SLA with LFMC holds great 
promise for using widely measured traits to overcome gaps in direct 
observations of LFMC by either linking repeat sampling of SLA to 
instantaneous LFMC or by using species- specific and/or community 
means of SLA to determine maximum LFMC and, thus, the upper 
limit of landscape- scale variability in LFMC. Furthermore, our model 
comparison suggests that including plant traits and atmospheric 
variables has great potential to improve existing models for predict-
ing spatiotemporal variation in LFMC, irrespective of whether these 
models are based on hydrological variables such as soil moisture 
(Vinodkumar et al., 2021), meteorological drought indices (Pellizzaro 
et al., 2007; Ruffault et al., 2018; Viegas et al., 2001), process- based 
models (Balaguer- Romano et al., 2022) or optical remote sensing 
(Caccamo et al., 2011; Nolan et al., 2016; Yebra et al., 2013, 2018).

4.2  |  How will climate change influence wildfire 
risk?

Globally, temperatures are rising at unprecedented speed, trig-
gering an increase in the number, duration, and intensity of heat-
waves and droughts likely to occur in this century (Hoegh- Guldberg 
et al., 2018; Perkins- Kirkpatrick & Lewis, 2020). The general warm-
ing trend has been accompanied by accelerated rises in VPD, which 
is a direct measure of atmospheric demand for water and a key driver 
for ecosystem functioning and plant mortality (Bauman et al., 2022; 
Grossiord et al., 2020; McDowell et al., 2022; Novick et al., 2016). 
In our model, VPD was the most important variable after SLA and 
explained between 22% (full model) and 33% (predawn or mid-
day model) of the remaining variability in LFMC. This, along with 
VPD becoming the most important variable when omitting SLA 
(Section 3.3), suggests that VPD was more important for predict-
ing predawn and midday LFMC than SWC. The relationship between 
VPD and burn area increased in vegetation that is sensitive to water 

limitation (Rao et al., 2022), which could explain the critical role of 
VPD in reducing LFMC at our site during the drought. Moreover, 
Balch et al. (2022) highlighted the importance of night- time VPD 
for sustaining active fire when flammability fails to cease at night. 
In our model, the scaled variable importance of VPD increased by 
50% when predicting predawn LFMC compared with the full model 
(Figure S.9), aligning with a number of recent studies that highlight 
the commonly underestimated importance of VPD for global wild-
fire risk (Balch et al., 2022; Chiodi et al., 2021; Clarke et al., 2022; 
Rao et al., 2022). Since VPD is an important predictor of the mois-
ture content of both dead fuels (Ray et al., 2010; Resco de Dios 
et al., 2015; Resco de Dios et al., 2021) and live fuels (this study), 
our finding of the combined importance of VPD and SLA provides a 
physiological basis for the relationship between burn area and VPD 
that is increasingly observed globally.

Droughts have been commonly associated with large fire events 
and severe fire seasons (Canadell et al., 2021; Duane et al., 2021; 
Keeley & Syphard, 2021; Nolan et al., 2021), especially when se-
vere soil- dryness co- occurs with extreme temperatures (Libonati 
et al., 2022). The individual and combined likelihood of drought, 
heat and fire are projected to increase in many regions over the 21st 
century (Hoegh- Guldberg et al., 2018). Drought stress is hypothe-
sized to be ameliorated by elevated atmospheric CO2, as increases 
in photosynthesis along with concurrent decreases in stomatal con-
ductance improve the intrinsic leaf- level plant water use efficiency 
(De Kauwe et al., 2021; Medlyn et al., 2011). However, we found no 
significant effect of CO2 treatments on Ψleaf, SLA or LFMC. SLA typ-
ically decreases under eCO2 in C3 species (including Eucalyptus sp.; 
Aspinwall et al., 2018; Duane et al., 2021; Poorter et al., 2009), so the 
missing effect might have been due to insufficient statistical power 
from the duration of the sampling campaign, or due to phosphorus 
limitation in the soils at the EucFACE experiment (Crous et al., 2015). 
The soils of southeastern Australia are typically nutrient- deficient, 
making it challenging to generalize the absence of a CO2 response 
for the examined plant water use and leaf traits to other ecosystems 
due to complex interactions between CO2 concentrations and soil 
nutrient availability (Ochoa- Hueso et al., 2019).

Direct observations of LFMC and leaf traits in response to CO2 
fertilization are rare. Manea et al. (2015) found in a glasshouse study 
that ignition time was positively correlated to leaf moisture content, 
and the latter was reduced under eCO2. This suggests that living fine 
fuels will be more flammable in future CO2 concentrations, which 
was confirmed by shorter ignition times of fuels in elevated than 
ambient CO2 concentrations (Manea et al., 2015). A potential expla-
nation for these counter- intuitive observations is that foliar nitrogen 
content is negatively correlated with leaf flammability (Grootemaat 
et al., 2015), and leaf nitrogen concentrations were reduced in 
woody plants grown under eCO2 at seedlings in the glasshouse study 
(Manea et al., 2015) and at mature E. tereticornis leaves at EucFACE 
(Wujeska- Klause et al., 2019b). In contrast, lower SLA has been 
linked to longer ignition times and smoulder duration in Australian 
evergreen perennial plants (Grootemaat et al., 2015), highlighting 
the potential for individual leaf traits to influence flammability in 
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opposing directions. Dynamic vegetation models might provide fur-
ther insights into fire risk under future climates (Harrison et al., 2021; 
Kloster & Lasslop, 2017; Rabin et al., 2017), but they do not routinely 
assess LFMC (Ma et al., 2021). Fortunately, LFMC can be calculated 
from leaf wet and dry weights, which Ma et al. (2021) capitalized on 
when using a hydrodynamic vegetation model (FATES- HYDRO) to 
estimate the influence of LFMC on fire risk under future climates 
in California's chaparral shrubs. They found that CO2 fertilization 
would mitigate fire risk by increasing LFMC by up to 4.8%, but this 
was not able to offset estimated increases in fire risk due to warming 
and decreased precipitation.

5  |  CONCLUSIONS

Our study provides a physiological basis for the relationship be-
tween burn area and VPD that is increasingly observed globally. 
While we were able to demonstrate the importance of incorporat-
ing dynamic variation in plant traits and VPD for predicting LFMC 
during droughts, elevated atmospheric CO2 concentrations did not 
exert any direct influence on the temporal dynamics of plant traits 
or LFMC. Whether this changes with higher atmospheric CO2 con-
centrations or during more prolonged and severe droughts remains 
unknown. Yet, plant traits, and particularly SLA, are more widely 
measured than LFMC, holding great promise to bridge the gap be-
tween missing direct observations of LFMC and thus to improve ex-
isting models that include fuel moisture dynamics into wildfire risk 
assessments. Moreover, ecological forecasts of LFMC at continen-
tal scale might be coming within reach when combining biophysi-
cal and satellite- based models of LFMC with near- term or seasonal 
forecasts of meteorological and hydrological variables, the latter of 
which have recently been integrated into Australia's national en-
semble forecasting system. Such continental- scale assessments and 
forecasts of LFMC dynamics are of great interest to agencies tasked 
with operational management of planned burns and wildfires.
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